48181 (666012), страница 2
Текст из файла (страница 2)
Следующие поколения ЭС претерпели кардинальные изменения:
-
вместо моделирования эксперта моделируется предметная область;
-
вместо попыток учета неопределенности в правилах — использование классической теории вероятностей и теории принятия решений;
-
вместо попыток замены эксперта — оказание ему помощи.
В конце 80-х годов были предложены обобщения ЭС в виде байесовых сетей, и была показана практическая возможность вычислений вероятностных выводов даже для сетей больших размеров. Вернемся к трехэтапному описанию профессиональных действий эксперта. Сейчас нас будет интересовать вопрос, как наблюдения эксперта, т. е. получение им информации о внешнем мире, изменяют его ожидания по поводу ненаблюдаемых событий?
Особенности вывода суждений в условиях неопределенности
Суть приобретаемого знания в условиях неопределенности состоит в понимании, влияет ли полученная информация на наши ожидания относительно других событий. Основная причина трудностей при использовании систем, основанных на правилах, состоит в учете «сторонних», «косвенных» последствий наблюдаемых событий. Проиллюстрируем это на уже успевшем стать классическим примере.
Шерлок Холмс вышел из дома утром и заметил, что трава вокруг влажная. Он рассудил: «Я думаю, что ночью был дождь. Следовательно, трава возле дома моего соседа, доктора Ватсона, вероятно, также влажная». Таким образом, информация о состоянии травы у дома Холмса повлияла на его ожидания относительно влажности травы у дома Ватсона. Но предположим, что Холмс проверил состояние сборника дождевой воды и обнаружил, что тот - сухой. В результате Холмс вынужден изменить ход своих рассуждений, и состояние травы возле его дома перестает влиять на ожидания по поводу травы у соседа.
Теперь рассмотрим две возможные причины, почему трава у дома Холмса оказалась влажной. Помимо дождя, Холмс мог просто забыть выключить поливальную установку накануне. Допустим, на следующее утро Холмс снова обнаруживает, что трава влажная. Это повышает его субъективные вероятности и для прошедшего дождя, и по поводу забытой дождевальной установки. Затем Холмс обнаруживает, что трава у дома Ватсона также влажная и заключает, что ночью был дождь.
Следующий шаг рассуждений практически невозможно воспроизвести в системах, основанных на правилах, однако он абсолютно естественен для человека: влажность травы у дома Ватсона объясняется дождем, и следовательно нет оснований продолжать ожидать, что была забыта включенной поливальная машина. Следовательно, возросшая, было, субъективная вероятность относительно забытой поливальной машины уменьшается до (практически) исходного значения, имевшего место до выхода Холмса из дома. Такой способ рассуждения можно назвать «попутное объяснение», «контекстное объяснение» или «редукция причины» (explaining away).
Важная особенность «попутного объяснения» состоит в изменении отношений зависимости между событиями по мере поступления информации. До выхода из дома Холмса факты дождя и работы поливальной установки были независимы. После получения информации о траве у дома они стали зависимыми. Далее, когда появилась информации о влажности травы у дома Ватсона, состояние зависимости вновь изменилось.
Эту ситуацию удобно описать при помощи графа, узлы которого представляют события (или переменные), а пара узлов (A, B) связывается направленным ребром, если информация об A может служить причиной для B. В этом случае узел A будет родителем для B, который, в свою очередь, называется узлом-потомком по отношению к A.
История с травой у Холмса и Ватсона представлена на рис. 1.
Рисунок 1 Граф рассуждений Шерлока Холмса
Граф на рис. 1 может быть отнесен к семейству байесовых сетей. В данном примере переменные в узлах могут принимать только булевы значения 1 или 0 (да/нет). Из графа на рис. 1 можно сделать несколько полезных выводов о зависимости и независимости переменных. В традиционной постановке байесовы сети не предназначены для оперирования с непрерывным набором состояний (например, с действительным числом на заданном отрезке). Для представления действительных чисел в некоторых приложениях можно провести разбиение отрезка на сегменты и рассматривать дискретный набор их центров.
Например, если известно, что ночью не было дождя, то информация о состоянии травы у дома Ватсона не оказывает влияния на ожидания по поводу состояния травы у дома Холмса.
В середине 80-х годов были подробно проанализированы способы, которыми влияние информации распространяется между переменными в байесовой сети. Будем считать, что две переменные разделены, если новые сведения о значении одной из них не оказывают влияния на ожидания по поводу другой. Если состояние переменной известно, мы будем называть такую переменную конкретизированной.
В байесовой сети возможны три типа отношений между переменными:
-
последовательные соединения (рис. 2a);
-
дивергентные соединения (рис. 2b),;
-
конвергентные соединения (рис. 2c).
Ситуация на рис. 2c требует, по-видимому, дополнительных пояснений—как возникает зависимость между предками конвергентного узла, когда становится известным значение потомка. Для простоты рассмотрим пример, когда узел A имеет всего двух предков –B и C. Пусть эти две переменные отвечают за выпадение орла и решки при независимом бросании двух разных монет, а переменная A — логический индикатор, который «загорается», когда обе монеты оказались в одинаковом состоянии (например, обе - решки). Теперь легко понять, что если значение индикаторной переменной стало известным, то значения B и C стали зависимыми — знание одного из них полностью определяет оставшееся.
Общее свойство (условной) независимости переменных — узлов в байесовой сети получило название d-разделения (d-separation).
Определение d-разделимости
Две переменные A и B в байесовой сети являются d-разделенными, если на каждом пути, соединяющем эти две вершины на графе, найдется промежуточная переменная V, такая что:
-
соединение с V последовательное или дивергентное и значение V известно, либо
-
соединение конвергентное и нет свидетельств ни о значении V, ни о каждом из ее потомков.
Так, в сети задачи Шерлока Холмса (рис. 1) переменные «Полив?» и «Трава у дома Ватсона?» являются d-разделенными. Граф содержит на пути между этими переменными конвергентное соединение с переменной «Трава у дома Холмса?».
(a)
(b)
(c)
Рисунок 2 Три типа отношений между переменным
и(a) Последовательное соединение. Влияние информации может распространяться от A к C и обратно, пока значение B не конкретизировано. (b) Дивергентное соединение. Влияние может распространяться между потомками узла A, пока его значение не конкретизировано. (c) Конвергентное соединение. Если об A ничего не известно, кроме того, что может быть выведено из информации о его предках B,C,... ,E, то эти переменные предки являются разделенными. При уточнении A открывается канал взаимного влияния между его предками.
Свойство d-разделимости соответствует особенностям логики эксперта-человека, поэтому крайне желательно, чтобы в рассуждениях машин относительно двух d-разделенных переменных новая информация об одной из них не изменяла степень детерминированности второй переменной. Формально, для переменных A и C, независимых при условии B, имеет место соотношение P(A | B) = P(A | B, C).
Отметим, что интуитивное восприятие условной зависимости и независимости иногда, даже в простых случаях, оказывается затрудненным, так как сложно из всех исходов событий мысленно выделить только те события, в которых значение обусловливающей переменной определено, и далее в рассуждения оперировать только ими.
Вот простой пример, поясняющий эту трудность: в некотором сообществе мужчины среднего возраста и молодые женщины оказались материально более обеспеченными, чем остальные люди. Тогда при условии фиксированного повышенного уровня обеспеченности пол и возраст человека оказываются условно зависимыми друг от друга!
Еще один классический пример, связанный с особенностями условных вероятностей. Рассмотрим некоторый колледж, охотно принимающий на обучение сообразительных и спортивных молодых людей (и тех, кто обладает обоими замечательными качествами!). Разумно считать, что среди всех молодых людей студенческого возраста спортивные и интеллектуальные показатели независимы. Теперь если вернуться к множеству зачисленных в колледж, то легко видеть, что высокая сообразительность эффективно понижает вероятность спортивности и наоборот, так как каждого из этих свойств по-отдельности достаточно для приема в колледж. Таким образом, спортивность и умственные показатели оказались зависимыми при условии обучения в колледже.
Использование Байесовых сетей.
Вероятности прогнозируемых значений отдельных переменных
На практике нам необходимы распределения интересующих нас переменных, взятые по отдельности. Они могут быть получены из соотношения для полной вероятности при помощи маргинализации — суммирования по реализациям всех переменных, кроме, выбранных.
Приведем пример точных вычислений в простой байесовой сети, моделирующей задачу Шерлока Холмса. Обозначения и смысл переменных в сети : R —был ли дождь, S — включена ли поливальная установка, C — влажная ли трава у дома Холмса, и W — влажная ли трава у дома Ватсона.
Все четыре переменные принимают булевы значения 0 — ложь, (f) или 1 — истина (t). Совместная вероятность P(R, S, C, W), таким образом, дается совокупной таблицей из 16 чисел. Таблица вероятностей нормирована, так что
Зная совместное распределение, легко найти любые интересующие нас условные и частичные распределения. Например, вероятность того, что ночью не было дождя при условии, что трава у дома Ватсона — влажная, дается простым вычислением:
Из теоремы об умножении вероятностей полная вероятность представляется цепочкой условных вероятностей:
P(R, S, C, W) = P(R) * P(S | R) * P(C |R,S)*P(W | R, S, C).
В описанной ранее байесовой сети ориентированные ребра графа отражают суть вероятностей, которые реально имеют место в задаче. Поэтому формула для полной вероятности существенно упрощается:
P(R, S, C, W) = P(R) *P(S) * P(C |R,S)*P(W | R).
Порядок следования переменных в соотношении для полной вероятности, вообще говоря, может быть любым. Однако на практике целесообразно выбирать такой порядок, при котором условные вероятности максимально редуцируются. Это происходит, если начинать с переменных-«причин», постепенно переходя к «следствиям». При этом полезно представлять себе некоторую «историю», согласно которой причины влияют на следствия.
Пример построения простейшей байесовской сети доверия.
Рассматриваем небольшую яблочную плантацию «яблочного Джека». Однажды Джек обнаружил, что его прекрасное яблочное дерево лишилось листвы. Теперь он хочет выяснить, почему это случилось. Он знает, что листва часто опадает, если:
дерево засыхает в результате недостатка влаги; или дерево болеет.
Данная ситуация может быть смоделирована байесовской сетью доверия, содержащей 3 вершины: «Болеет», «Засохло» и «Облетело».
Рис.1. Пример байесовской сети доверия с тремя событиями.
В данном простейшем случае рассмотрим ситуацию, при которой каждая вершина может принимать всего лишь два возможных состояний и, как следствие находится в одном из них, а именно:
Вершина (событие) БСД | Состояние 1 | Состояние 2 |
“Болеет” | «болеет» | «нет» |
“Засохло” | «засохло» | «нет» |
“Облетело” | «да» | «нет» |
Вершина “Болеет” говорит о том, что дерево заболело, будучи в состоянии «болеет», в противном случае она находится в состоянии «нет». Аналогично для других двух вершин. Рассматриваемая байесовская сеть доверия, моделирует тот факт, что имеется причинно-следственная зависимость от события “Болеет” к событию “Облетело” и от события “Засохло” к событию “Облетело”. Это отображено стрелками на байесовской сети доверия.
Когда есть причинно-следственная зависимость от вершины А к другой вершине B, то мы ожидаем, что когда A находится в некотором определённом состоянии, это оказывает влияние на состояние B. Следует быть внимательным, когда моделируется зависимость в байесовских сетях доверия. Иногда совсем не очевидно, какое направление должна иметь стрелка.