48181 (666012), страница 2

Файл №666012 48181 (Применение Байесовых сетей) 2 страница48181 (666012) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Следующие поколения ЭС претерпели кардинальные изменения:

  1. вместо моделирования эксперта моделируется предметная область;

  2. вместо попыток учета неопределенности в правилах — использование классической теории вероятностей и теории принятия решений;

  3. вместо попыток замены эксперта — оказание ему помощи.

В конце 80-х годов были предложены обобщения ЭС в виде байесовых сетей, и была показана практическая возможность вычислений вероят­ностных выводов даже для сетей больших размеров. Вернемся к трехэтапному описанию профессиональных действий экс­перта. Сейчас нас будет интересовать вопрос, как наблюдения эксперта, т. е. получение им информации о внешнем мире, изменяют его ожидания по поводу ненаблюдаемых событий?

Особенности вывода суждений в условиях неопределенности

Суть приобретаемого знания в условиях неопределенности состоит в пони­мании, влияет ли полученная информация на наши ожидания относительно других событий. Основная причина трудностей при использовании систем, основанных на правилах, состоит в учете «сторонних», «косвенных» по­следствий наблюдаемых событий. Проиллюстрируем это на уже успевшем стать классическим примере.

Шерлок Холмс вышел из дома утром и заметил, что трава вокруг влаж­ная. Он рассудил: «Я думаю, что ночью был дождь. Следовательно, тра­ва возле дома моего соседа, доктора Ватсона, вероятно, также влажная». Таким образом, информация о состоянии травы у дома Холмса повлия­ла на его ожидания относительно влажности травы у дома Ватсона. Но предположим, что Холмс проверил состояние сборника дождевой воды и обнаружил, что тот - сухой. В результате Холмс вынужден изменить ход своих рассуждений, и состояние травы возле его дома перестает влиять на ожидания по поводу травы у соседа.

Теперь рассмотрим две возможные причины, почему трава у дома Холмса оказалась влажной. Помимо дождя, Холмс мог просто забыть вы­ключить поливальную установку накануне. Допустим, на следующее утро Холмс снова обнаруживает, что трава влажная. Это повышает его субъек­тивные вероятности и для прошедшего дождя, и по поводу забытой дожде­вальной установки. Затем Холмс обнаруживает, что трава у дома Ватсона также влажная и заключает, что ночью был дождь.

Следующий шаг рассуждений практически невозможно воспроизвести в системах, основанных на правилах, однако он абсолютно естественен для человека: влажность травы у дома Ватсона объясняется дождем, и следовательно нет оснований продолжать ожидать, что была забыта включенной поливальная машина. Следовательно, возросшая, было, субъективная вероятность относительно забытой поливальной машины умень­шается до (практически) исходного значения, имевшего место до выхода Холмса из дома. Такой способ рассуждения можно назвать «попутное объ­яснение», «контекстное объяснение» или «редукция причины» (explaining away).

Важная особенность «попутного объяснения» состоит в изменении от­ношений зависимости между событиями по мере поступления информа­ции. До выхода из дома Холмса факты дождя и работы поливальной уста­новки были независимы. После получения информации о траве у дома они стали зависимыми. Далее, когда появилась информации о влажности травы у дома Ватсона, состояние зависимости вновь изменилось.

Эту ситуацию удобно описать при помощи графа, узлы которого пред­ставляют события (или переменные), а пара узлов (A, B) связывается на­правленным ребром, если информация об A может служить причиной для B. В этом случае узел A будет родителем для B, который, в свою очередь, называется узлом-потомком по отношению к A.

История с травой у Холмса и Ватсона представлена на рис. 1.

Рисунок 1 Граф рассуждений Шерлока Холмса

Граф на рис. 1 может быть отнесен к семейству байесовых сетей. В дан­ном примере переменные в узлах могут принимать только булевы значения 1 или 0 (да/нет). Из графа на рис. 1 можно сделать несколько полезных выводов о зависимости и независимости переменных. В традиционной постановке байесовы сети не предназначены для оперирования с непрерывным набором состояний (например, с действительным числом на заданном отрез­ке). Для представления действительных чисел в некоторых приложениях можно провести разбиение отрезка на сегменты и рассматривать дискретный набор их центров.

Например, если известно, что ночью не было дождя, то информация о состоянии травы у дома Ватсона не оказывает влияния на ожидания по поводу состояния травы у дома Холмса.

В середине 80-х годов были подробно проанализированы способы, ко­торыми влияние информации распространяется между переменными в байесовой сети. Будем считать, что две переменные разделены, если но­вые сведения о значении одной из них не оказывают влияния на ожидания по поводу другой. Если состояние переменной известно, мы будем назы­вать такую переменную конкретизированной.

В байесовой сети возможны три типа отношений между переменными:

  1. последовательные соединения (рис. 2a);

  2. дивергентные соединения (рис. 2b),;

  3. конвергентные соединения (рис. 2c).

Ситуация на рис. 2c требует, по-видимому, дополнительных поясне­ний—как возникает зависимость между предками конвергентного узла, когда становится известным значение потомка. Для простоты рассмот­рим пример, когда узел A имеет всего двух предков –B и C. Пусть эти две переменные отвечают за выпадение орла и решки при независимом броса­нии двух разных монет, а переменная A — логический индикатор, который «загорается», когда обе монеты оказались в одинаковом состоянии (напри­мер, обе - решки). Теперь легко понять, что если значение индикаторной переменной стало известным, то значения B и C стали зависимыми — знание одного из них полностью определяет оставшееся.

Общее свойство (условной) независимости переменных — узлов в бай­есовой сети получило название d-разделения (d-separation).

Определение d-разделимости

Две переменные A и B в байесовой сети являются d-разделенными, если на каждом пути, соединяющем эти две вершины на графе, найдется промежуточная переменная V, такая что:

  1. соединение с V последовательное или дивергентное и значение V известно, либо

  2. соединение конвергентное и нет свидетельств ни о значении V, ни о каждом из ее потомков.

Так, в сети задачи Шерлока Холмса (рис. 1) переменные «Полив?» и «Трава у дома Ватсона?» являются d-разделенными. Граф содержит на пути между этими переменными конвергентное соединение с переменной «Трава у до­ма Холмса?».

(a)

(b)

(c)

Рисунок 2 Три типа отношений между переменным

и(a) Последовательное соединение. Влияние информации может распростра­няться от A к C и обратно, пока значение B не конкретизировано. (b) Дивер­гентное соединение. Влияние может распространяться между потомками узла A, пока его значение не конкретизировано. (c) Конвергентное соединение. Если об A ничего не известно, кроме того, что может быть выведено из информации о его предках B,C,... ,E, то эти переменные предки являются разделенными. При уточнении A открывается канал взаимного влияния между его предками.

Свойство d-разделимости соответствует особенностям логики экспер­та-человека, поэтому крайне желательно, чтобы в рассуждениях машин относительно двух d-разделенных переменных новая информация об од­ной из них не изменяла степень детерминированности второй переменной. Формально, для переменных A и C, независимых при условии B, имеет место соотношение P(A | B) = P(A | B, C).

Отметим, что интуитивное восприятие условной зависимости и неза­висимости иногда, даже в простых случаях, оказывается затрудненным, так как сложно из всех исходов событий мысленно выделить только те события, в которых значение обусловливающей переменной определено, и далее в рассуждения оперировать только ими.

Вот простой пример, поясняющий эту трудность: в некотором сообще­стве мужчины среднего возраста и молодые женщины оказались матери­ально более обеспеченными, чем остальные люди. Тогда при условии фик­сированного повышенного уровня обеспеченности пол и возраст человека оказываются условно зависимыми друг от друга!

Еще один классический пример, связанный с особенностями условных вероятностей. Рассмотрим некоторый колледж, охотно принимающий на обучение сообразительных и спортивных молодых людей (и тех, кто обла­дает обоими замечательными качествами!). Разумно считать, что среди всех молодых людей студенческого возраста спортивные и интеллектуальные показатели независимы. Теперь если вернуться к множеству зачисленных в колледж, то легко видеть, что высокая сообразительность эффективно понижает вероятность спортивности и наоборот, так как каждого из этих свойств по-отдельности достаточно для приема в колледж. Таким образом, спортивность и умственные показатели оказались зависимыми при условии обучения в колледже.

Использование Байесовых сетей.

Вероятности прогнозируемых значений отдельных переменных

На практике нам необходимы распределения интересующих нас пере­менных, взятые по отдельности. Они могут быть получены из соотношения для полной вероятности при помощи маргинализации — суммирования по реализациям всех переменных, кроме, выбранных.

Приведем пример точных вычислений в простой байесовой сети, мо­делирующей задачу Шерлока Холмса. Обозначения и смысл пе­ременных в сети : R —был ли дождь, S — включена ли поливальная установка, C — влажная ли трава у дома Холмса, и W — влажная ли трава у дома Ватсона.

Все четыре переменные принимают булевы значения 0 — ложь, (f) или 1 — истина (t). Совместная вероятность P(R, S, C, W), таким образом, да­ется совокупной таблицей из 16 чисел. Таблица вероятностей нормирована, так что

Зная совместное распределение, легко найти любые интересующие нас условные и частичные распределения. Например, вероятность того, что ночью не было дождя при условии, что трава у дома Ватсона — влажная, дается простым вычислением:

Из теоремы об умножении вероятностей полная вероятность пред­ставляется цепочкой условных вероятностей:

P(R, S, C, W) = P(R) * P(S | R) * P(C |R,S)*P(W | R, S, C).

В описанной ранее байесовой сети ориентированные ребра графа отража­ют суть вероятностей, которые реально имеют место в задаче. Поэтому формула для полной вероятности существенно упрощает­ся:

P(R, S, C, W) = P(R) *P(S) * P(C |R,S)*P(W | R).

Порядок следования переменных в соотношении для полной вероятности, вообще говоря, может быть любым. Однако на практике целесообразно выбирать такой порядок, при котором условные вероятности максимально редуцируются. Это происходит, если начинать с переменных-«причин», постепенно переходя к «следствиям». При этом полезно представлять себе некоторую «историю», согласно которой причины влияют на следствия.

Пример построения простейшей байесовской сети доверия.

Рассматриваем небольшую яблочную плантацию «яблочного Джека». Однажды Джек обнаружил, что его прекрасное яблочное дерево лишилось листвы. Теперь он хочет выяснить, почему это случилось. Он знает, что листва часто опадает, если:

дерево засыхает в результате недостатка влаги; или дерево болеет.

Данная ситуация может быть смоделирована байесовской сетью доверия, содержащей 3 вершины: «Болеет», «Засохло» и «Облетело».

Рис.1. Пример байесовской сети доверия с тремя событиями.

В данном простейшем случае рассмотрим ситуацию, при которой каждая вершина может принимать всего лишь два возможных состояний и, как следствие находится в одном из них, а именно:

Вершина (событие) БСД

Состояние 1

Состояние 2

“Болеет”

«болеет»

«нет»

“Засохло”

«засохло»

«нет»

“Облетело”

«да»

«нет»

Вершина “Болеет” говорит о том, что дерево заболело, будучи в состоянии «болеет», в противном случае она находится в состоянии «нет». Аналогично для других двух вершин. Рассматриваемая байесовская сеть доверия, моделирует тот факт, что имеется причинно-следственная зависимость от события “Болеет” к событию “Облетело” и от события “Засохло” к событию “Облетело”. Это отображено стрелками на байесовской сети доверия.

Когда есть причинно-следственная зависимость от вершины А к другой вершине B, то мы ожидаем, что когда A находится в некотором определённом состоянии, это оказывает влияние на состояние B. Следует быть внимательным, когда моделируется зависимость в байесовских сетях доверия. Иногда совсем не очевидно, какое направление должна иметь стрелка.

Характеристики

Тип файла
Документ
Размер
864,69 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее