45376 (664759), страница 5
Текст из файла (страница 5)
Приведем другие технологические данные, необходимые для расчета: максимальный объемный расход vmax = 10-4 м3/с, внутренний диаметр трубы D = 20 мм, шероховатость трубы по справочнику [4, c.272] принимаем n1 = 0.1 мм. Давление в магистрали p0 = 0.4 МПа, давление в рубашке pруб = 0.15 МПа. Плотность воды ρ = 1000 кг/м3. Кинематическая вязкость воды при 80 °С ν = 0.328·10-6 м2/с.
Порядок расчета следующий [4, с. 269]:
-
определяем потери давления в линии. Для этого найдем
перепад давлений в сети:
Определяем число Рейнольдса при максимальном расходе:
Определяем условие гидравлической гладкости трубопровода:
Т рубопровод не является гидравлически гладким, поэтому коэффициент гидравлического сопротивления λ определяется по рисунку 6.21 в [3, с.275]. λ = 0.0326.
Общая длина трубопровода L = 10 м. Находим потерю давления на прямых участках трубопровода:
Определим потери давления в местных гидравлических сопротивлениях трубопровода. По таблице 6.8 [2, с.271] определяем: εвх = 0.5, εвых = 1, ε90 = 0.6, εотсеч = 8.0. Тогда суммарные потери равны:
Находим суммарные потери в линии:
-
в каталоге отсутствует РО со столь малым Kvу. Поэтому
выбираем односедельный РО: ПОУ-7, Dу = 15 мм, Kvу = 0.1.
Т.к. Reу > 2000, то влияние вязкости на расход не учитываем и выбранный РО проверяем на возможность возникновения кавитации.
По кривой 3 на рисунке 6.23 [3, с. 277] определяем, что максимальный коэффициент кавитации Kкав max = 0.55
-
определим перепад давлений, при котором возникает
кавитация. При этом учтем, что абсолютное давление насыщенных паров воздуха при температуре 80 °С равно Pнщ = 0.047 МПа, а давление перед РО приблизительно равно давлению в магистрали.
Т .к. Kv max > Kvу для выбранного РО, то он будет работать в режиме кавитации и не обеспечит заданного расхода жидкости. Поэтому выбираем из каталога РО ПОУ-7 с Dу = 15 мм, Kvу = 0.5.
-
выберем вид расходной характеристики клапана. Согласно
модели, основными возмущениями в объекте являются внешние возмущения, которые не действуют по регулирующему каналу. Поэтому по условиям процесса желательна линейная характеристика. Рассчитаем отношение перепада давлений в линии к перепаду давлений на РО:
Поскольку n < 1.5, то окончательно останавливаем свой выбор на клапане с линейной расходной характеристикой.
Для последующего анализа системы необходимо знать передаточные функции клапана и исполнительного механизма. В качестве исполнительного механизма можно использовать стандартный механизм типа МИМ-1 прямого действия совместно с позиционером. Его передаточную функцию можно описать как инерционное звено 1 порядка с единичным коэффициентом усиления. Его инерционность обусловлена емкостью соединительных трубопроводов и камеры переменного объема. Обычно эта инерционность лежит в пределах 5 – 20с, поэтому принимаем TИМ = 0.1 мин.
Так как был выбран РО с условной пропускной способностью в 18 раз большей, чем РО, соответствующий выбранному нами единичному расходу, то РО будем считать усилительным звеном с коэффициентом усиления KРО =18.
-
Выбор регулирующего органа для расхода реагентов
Как было указано в пункте 2.1, подача реагентов в аппарат осуществляется с помощью перистальтических насосов, приводимых в движение двигателями постоянного тока независимого возбуждения. Такой выбор обусловлен прежде всего жесткими ограничениями, накладываемыми на скорость и качество подачи реагентов. А именно, необходимо поддерживать беспульсационный режим течения. Кроме того, нежелательность использования клапанов вытекает из высоких требований к чистоте растворов. Для их подачи используются трубки из поливинилхлорида. Характерной особенностью перистальтического насоса является отсутствие соприкосновения жидкости с металлом. Этим и объясняется наш выбор.
Д ля управления частотой вращения двигателя постоянного тока применяется электропривод типа ЭТУ, имеющий вход для унифицированного сигнала постоянного тока. Регулирование частоты вращения при этом возможно вниз по электромеханической характеристике на 50% от максимального значения.
В динамическом отношении двигатель является апериодическим звеном первого порядка. Электронное устройство управления является безынерционным звеном с единичным коэффициентом усиления. Постоянную времени электродвигателя принимаем 0.1 мин. TИМ = 0.1.
-
Расчет и выбор измерительных преобразователей
Основой для выбора преобразователей является достижение требуемой точности измерений. В нашем случае есть два контура регулирования – pBr и температуры, и для каждого применяется свой комплект датчиков и измерительных преобразователей.
-
Выбор комплекта для измерения pBr
Для измерения pBr в реакторе выбираем комплект, состоящий из датчика погружного ДПг-4М-2-1600 и нормирующего преобразователя типа П-201. В качестве сравнительного электрода применяется непроточный хлорсеребряный электрод 5268, в качестве измерительного – аргентитовый электрод ЭА-2-220. Пределы измерений устанавливаются на приборе П-201 с помощью специальных перемычек. В нашем случае выбираем пределы 1 – 7 единиц pBr. Рабочая температура в пределах +5…+70 °С. Время установления сигнала преобразователя < 10 с. Поэтому принимаем передаточную функцию датчика и нормирующего преобразователя в виде апериодического звена первого порядка.
где Tд = 0.05 мин.
Для регистрации pBr используется автоматический самопишущий мост типа КСУ-1М. Рассчитаем пределы погрешности измерительного комплекта для регистрации pBr. Схема комплекта приведена на рисунке 5.2.
Рисунок 5.2 – Схема комплекта для измерения pBr
Значение pBr, регистрируемое мостом, будет равно: (pBrд ± ΔpBr), где pBrд – действительное значение pBr, ΔpBr – абсолютная погрешность измерения. Эта погрешность вычисляется по формуле:
г де Δи – инструментальная погрешность;
Δм – методическая погрешность;
Δл – личная погрешность.
Личную составляющую погрешности определим как половину цены деления шкалы вторичного прибора Δл = 0.1 pBr.
Инструментальная погрешность: Δи = δи·ΔN1. В свою очередь, относительная погрешность вычисляется по формуле:
относительные погрешности отдельных элементов комплекта вычисляются по формулам:
где ΔДПГ – абсолютная погрешность датчика, ±0.1 pBr;
где γП-201 – приведенная погрешность вторичного преобразователя, 0.01;
где γКСУ – приведенная погрешность моста, 0.005.
Проведя вычисления по этим формулам, получаем: δДПГ = 0.045, δП-201 = 0.018, δКСУ = 0.009. Подставив полученные значения в (5.4), получаем δи = 0.054. Абсолютная погрешность Δи = 0.12 pBr.
Методическую погрешность принимаем равной нулю, т.к. статические характеристики датчика и вторичного прибора являются линейными.
Подставляя полученные результаты в (5.3), получаем значение абсолютной погрешности измерения pBr: ΔpBr = 0.15 pBr.
Полученное значение меньше, чем диапазон требуемой точности поддержания величины pBr в аппарате. Поэтому выбранный нами комплект удовлетворяет требованиям процесса с метрологической точки зрения.
-
Выбор комплекта для измерения температуры
Для измерения температуры в реакторе и в рубашке выбираем термопреобразователь сопротивления типа ТСП-0879-01 со статической характеристикой 50П. Пределы измерения: –50…+250 °С. Рабочее давление – не выше 0.4 МПа. Инерционность – 30…40 с. На основании этого принимаем постоянную времени датчика 0.2 мин.
В будущем планируется использовать регулятор типа Р17.2, имеющий входы для двух сигналов от термопреобразователей сопротивления. Поэтому в использовании нормирующих преобразователей надобности нет. Для регистрации температуры используется автоматический самопишущий мост типа КСМ-4, имеющий вход для сигнала от термопреобразователя сопротивления.
Рассчитаем пределы погрешности измерительного комплекта для регистрации температуры. Схема комплекта приведена на рисунке 5.3.
Рисунок 5.3 – Схема комплекта для измерения температуры
Значение температуры, регистрируемое мостом, будет равно (tд ± Δt), где tд – действительное значение температуры, Δt – абсолютная погрешность измерения.
Эта погрешность вычисляется по формуле:
где Δи – инструментальная погрешность;
Δм – методическая погрешность;
Δл – личная погрешность.
Личную составляющую погрешности определим как половину цены деления шкалы вторичного прибора Δл = 0.5 °С.
Инструментальная погрешность: Δи = δи·ΔN1. В свою очередь, относительная погрешность вычисляется по формуле: