45 (641384), страница 7

Файл №641384 45 (Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата) 7 страница45 (641384) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Найдем выражения, позволяющие вычислять составляющие вектора гравитационного момента Мгр, действующего на некоторое тело S [1, 3]. Введем связанную с телом правую систему координат ОXоYоZo с ортами i, j, k и началом в центре масс тела О, которая совпадает с орбитальной. Соответственно ось OYo натравим по продолжению радиуса-вектора, соединяющего центр притяжения С с началом О, а ось ОXo расположим в мгновенной орбитальной плоскости. Гравитационный момент, действующий на тело S, будет равен:

;

где p - радиус-вектор некоторой элементарной массы материального тела,

dG-вектор силы тяжести, действующей на эту элементарную массу. Очевидно, что

.

Здесь g - ускорение силы тяжести на поверхности планеты, r – радиус-вектор элементарной массы dm относительно центра тяготения С, гg -удаление поверхности планеты от центра C. Введя еще r0 - радиус-вектор центра масс тела S относительно С, следовательно [3]:

;

где - гравитационная постоянная для рассматриваемой планеты, равная .

Проекции гравитационного момента на оси триэдра ОXoYoZo, будут равны:

; (3.18)

где D и F-центробежные моменты инерции тела S, определяемые для системы

осей ОXоYоZo.

Полученные для гравитационного момента выражения говорят о том, что вектор этого момента всегда лежит в плоскости местного горизонта (перпендикулярен к местной вертикали СО) [1, 4, 10]. Кроме того, очевидно, что гравитационный момент для тела, главные центральные оси инерции которого в данное мгновение совпадают с орбитальными, равен нулю (так как в этом случае D=F=0), в частности он всегда равен нулю для тела, эллипсоид инерции которого является сферой.

В общем случае главные центральные оси инерции тела могут быть повернуты произвольным образом относительно орбитальных осей ориентации. Обозначим жестко связанный с телом S триэдр, совпадающий с главными центральными осями инерции, через Охуz, а для орбитальных осей сохраним обозначение OXoYoZo. Взаимное положение этих систем координат определим следующей таблицей направляющих косинусов:

.

Найдем проекцию гравитационного момента на ось Ох. Очевидно, что

. (3.19)

Воспользовавшись свойством направляющих косинусов, преобразуем равенство (3.19) с учетом формул (3.18):

; (3.20)

поскольку триэдр Oxyz совпадает с главными центральными осями инерции, постольку все центробежные моменты инерции в этих осях будут равны нулю, и выражение (3.20) может быть упрощено [1, 3]. Проделав аналогичные выкладки для нахождения проекций гравитационного момента можно, написать:

(3.21)

Таким образом, гравитационный момент, действующий вокруг одной из осей триэдра Oxyz, зависит от разности моментов инерции относительно двух других осей. Чтобы сделать анализ полученных выражений более наглядным, рассмотрим гравитационный момент, действующий на тело S, при условии, что оси 0Z и 0Zo совпадают. Это соответствует повороту тела S, который можно назвать поворотом по тангажу, на угол (рис. 3.6).

Рис. 3.6 - Поворот тела вокруг оси Z

При сделанных предположениях

, ;

н, следовательно,

;

Как и надо было ожидать, при гравитационный момент обращается в нуль, поскольку триэдры Охуz и 0XoYoZo в этом случае совпадают [1, 3]. При монотонном увеличении от гравитационный момент возрастает, достигает максимума при , затем убывает и вновь становится равным нулю при . Таким образом, существует два положения равновесия: при и при . Однако, из этих положений одно соответствует статической устойчивости (при малом изменении , возникает момент противоположного знака), другое – статистической неустойчивости. Действительно, производная

;

при и при имеет разные знаки. Какое из этих двух положений соответствует статистической устойчивости, зависит от знака (B-A) [1, 3, 8]. Условие устойчивости (возникновение восстанавливающего момента при малом отклонении) реализуется при для A>B или при для B>A, т.е. в обоих случаях вытянутая ось тела должна занимать вертикальное положение.

Таким образом, вытянутое в вертикальном положении тело, обладая статистической устойчивостью по тангажу и крену, является нейтральным по отношению к углу рыскания [1, 3, 4].

3.3 Гироскопический измеритель угловой скорости

Для пересчета векторов сил, моментов и т.д. из одной системы координат в другую необходимо вычислить матрицу перехода, элементами которой являются косинусы углов между осями исходной и повернутой систем координат [1, 3, 21]. Эта матрица определяется последовательностью углов поворота, которые позволяют перейти от одной системы координат к другой. Осуществление такого рода перехода требует не более трех поворотов исходной системы координат. Выбор последовательности углов поворота обычно определяется физическим содержанием задачи [1, 3, 5]. Это могут быть углы, измеренные с помощью приборов системы управления, от которых зависят аэродинамические и другие нагрузки на ЛА и т.д. [1]

Применение направляющих косинусов в космических приложениях обусловлено, прежде всего, тем, что они могут быть непосредственно измерены на борту космического аппарата [5].

1. Сформируем матрицу A [3,3] – переход от ССК к ПСК ГИВУС:

ССК

ПСК

x

y

z

x

[1,1]

[1,2]

[1,3]

y

[2,1]

[2,2]

[2,3]

z

[3,1]

[3,2]

[3,3]


=А


Матрица dА получается вследствие трех элементарных поворотов:

  1. вокруг оси х на АД(1):

Рис.3.7 - Схема поворота первого типа вокруг оси х

Матрица направляющих косинусов:

;

  1. вокруг оси y на АД(2):

Рис. 3.8 - Схема поворота второго типа вокруг оси у

Матрица направляющих косинусов:

;

  1. вокруг оси z на АД(3):

Рис. 3.9 - Схема поворота третьего типа вокруг оси z

Матрица направляющих косинусов:

;

Так как , то :

.

2. Сформируем матрицу  [6,3] – переход от ПСК ГИВУС к ЧЭ:

ПСК

оси

x

y

z

1

[1,1]

[1,2]

[1,3]

2

[2,1]

[2,2]

[2,3]

3

[3,1]

[3,2]

[3,3]

4

[4,1]

[4,2]

[4,3]

5

[5,1]

[5,2]

[5,3]

6

[6,1]

[6,2]

[6,3]

( )

3. Сформируем матрицу Am[3,3] погрешностей установки ГИВУС в ССК:

.

Матрица Аm получается, если предположить что

4. Сформируем матрицу D[6,3] - переход от CСК к ЧЭ:

D=*A*ADm.

5. Определяется время точностной готовности MGOT.

6. Вычислим угловой уход.

где [k] – угол ухода;

pr[k] – значение угла ухода, соответствующее предыдущему такту;

- паспортизируемый уход;

 - погрешность паспортизации;

- математическое ожидание;

- среднеквадратичное отклонение случайного ухода;

NORM( ) – случайная составляющая, отвечающая нормальному закону распределения.

7. Приведем измеренный сигнал к осям ЧЭ:

,

где - угол поворота объекта, приведенный к осям ЧЭ (вектор, );

- угол поворота объекта.

8. Учет углового ухода, шума измерений и переходного процесса при достижении готовности ЧЭ [21]:

где [k] – интеграл, измеренный ЧЭ;

pr[k] - интеграл, измеренный ЧЭ на предыдущем такте;

BSH[k] – «белый шум», распределенный по нормальному закону;

BSTR[k] – шум, создаваемый системой термостатирования;

АPER – величина помехи в переходном процессе;

MGOT – время готовности;

NGOT – счетчик готовности k-го ЧЭ.

Характеристики

Тип файла
Документ
Размер
11,22 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее