45 (641384), страница 4

Файл №641384 45 (Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата) 4 страница45 (641384) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Гиростабилизированные платформы применяются для обеспечения режимов управления движением центра масс и стабилизации углового положения при работе маршевых двигателей или управления спутником в атмосфере. Бесплатформенная система с использованием бортовой вычислительной машины способна обеспечить и такие режимы. С этой целью к ней подключается группа датчиков, обозначенная через Д3 (см. рис.2.1), например акселерометров [9, 15]. Хотя такие акселерометры стоят неподвижно относительно корпуса космического аппарата и поэтому их оси чувствительности участвуют в поворотах вместе с корпусом, их показания для некоторого мгновения t всегда могут быть сопоставлены с углами ориентации относительно абсолютного пространства для того же t, получаемыми указанными выше способами. Это позволяет производить в машине соответствующие пересчеты и в конечном итоге путем интегрирования уравнений движения центра масс иметь все нужные данные для управления движением центра масс [1]. На рис. 2.1 связь бортовой вычислительной машины с контуром управления движением центра масс и управления угловым положением при режимах, связанных с большими силовыми воздействиями на космический аппарат, не показана.

Бортовая вычислительная машина не только не делает управление гибким и вполне заменяет гироплатформу, но способна производить обработку сигналов, поступающих с датчиков внешней информации, с целью выделения полезного сигнала из шумов [7, 22]. Таким образом, во всех отношениях, в том числе и в способности работать фильтром для сигналов, характеризуемых заметными флуктуациями, бесплатформенная система вполне заменяет корректируемые гиростабилизированные платформы [12].

Применение бесплатформенных систем имеет большие перспективы, поскольку они не обладают недостатками платформ, установленных в кардановых подвесах [9, 12, 15].









2.2 Гироскопический измеритель вектора угловой скорости

Гироскопические системы ориентации позволяют получить необходимую информацию для автоматического управления ЛА автономными методами, без каких-либо иных, не зависящих от внешних помех источников информации (локация, радионавигация, астроориентация и др.) [1, 21].

Бесплатформенные (бескарданные) системы ориентации, чувствительными элементами которых являются гироскопические датчики первичной информации, измеряющие углы или угловые скорости поворота ЛА и линейные ускорения (акселерометры и физические маятники). Эти датчики устанавливаются непосредственно на борту ЛА и работают совместно с цифровой или аналоговой вычислительной машиной, непрерывно производя расчет углов курса, крена и тангажа или иных параметров, определяющих ориентацию ЛА относительно базовой системы координат [1, 3, 9, 12].

В бесплатформенных системах ориентации и навигации гироскопы и акселерометры устанавливаются непосредственно на корпусе ЛА либо монтируются в специальные блоки чувствительных элементов. Сигналы этих датчиков поступают на вход ЭВМ, которая решает задачу ориентации аналитически, как бы, заменяя собой карданов подвес и координатный преобразователь гироплатформы.

Наибольшее распространение в бесплатформенных системах ориентации и навигации получают прецизионные датчики угловых скоростей (ДУС) и гироскопы на электростатическом подвесе, определяющие углы поворота ЛА вокруг центра его масс; также используются угловые и линейные акселерометры, установленные определенным образом на корпусе ЛА [1, 9, 21]. В отличие от систем ориентации с гироплатформами в бесплатформенных системах гироскопические датчики и акселерометры работают в более тяжелых условиях эксплуатации вследствие изменения расположения приборов по отношению к направлению гравитационного поля Земли, больших скоростей и ускорений, возникающих при вращении, колебаниях и вибрации корпуса ЛА [1].

Точность же измерения угловых скоростей, ускорений или угловых перемещений КА должна быть того же уровня, который достигнут в системах платформенного типа.

Датчики угловых скоростей – это один из основных и наиболее совершенных чувствительных элементов систем управления, стабилизации и навигации [21].

К характеристикам ДУС предъявляются очень жесткие требования. Так, верхний диапазон скоростей, измеряемых современными ДУС, соответствует десяткам и сотням градусам в секунду. Верхний диапазон входных воздействий, в котором ДУС обязан обеспечивать измерения угловой скорости, достигает 100 Гц [21].

Прецизионные ДУС бесплатформенных инерциальных систем должны иметь разрешающую способность до тысячных долей градусов в час и линейность до 10-3%, причем эти ДУС должны формировать выходной сигнал в цифровом виде. В широком диапазоне варьируются требования к массовым и габаритным параметрам приборов; из-за миниатюризации ДУС в последнее время значительно уменьшились величины собственного кинетического момента их гироскопов [1, 9, 12, 21].

Датчик угловой скорости (ДУС) служит для измерения угловой скорости КА от 0,001 до 10 с-1 в инерциальном пространстве. Для этой цели можно применять как двухстепенные, так и трехстепенные гироскопы. Гиротахометр (рис. 2.2) представляет собой обычно гироскоп с двумя степенями свободы и жесткой отрицательной обратной связью, которая создает противодействующий момент, пропорциональный угловому отклонению рамки от исходного положения для получения приемлемых переходных процессов применяются специальные демпферы; если гироскоп помещается в поплавок, то демпфирование осуществляется жидкостью [1, 21].

Рис. 2.2 - Кинематическая схема гиротахометра:

1 – ротор; 2 – рамка; 3 – датчик сигнала; 4 – демпфер; 5 – цапфа выходной оси; 6 – пружины; Н – кинетический момент гироскопа.

Величина момента сухого трения М0, определяет порог чувствительности гироскопа по отношению к измеряемой скорости. В поплавковых гироскопах момент М0 пренебрежимо мал. Поэтому в установившемся режиме угол поворота рамки относительно ее оси [21]

Кпр – приведенная жесткость пружины.

ГИВУС включает в себя шесть измерителей с некомпланарным расположением осей чувствительности (измерительных осей).

Все шесть измерительных осей ( ) при номинальном положении располагаются параллельно ребрам базового правильного шестигранника, вписанного в конус вращения с углом полураствора , равным 0,9553 рад, и имеющего симметричное расположение ребер по кругу основания конуса с угловым шагом , равным 1,04 рад [21].

  1. В качестве приборной системы координат принимается правая ортогональная Oxпyпzп, материализованная посадочными местами на корпусе ГИВУС. Ориентация осей чувствительности ГИВУС относительно осей приборной системы координат приведена на рисунке (рис 2.3) где:

Oxпyпzп – приборная система координат ГИВУС;

– положительные направления осей чувствительности ГИВУС (измерителей А1, А2, А3, А4, А5, А6 соответственно).

Оси чувствительности и параллельны плоскости хпОуп. На рисунке (рис. 2.4) показаны положительные направления углов отклонения осей чувствительности измерителей относительно номинального положения, где

– номинальные положения осей чувствительности измерителей А1, А2, А3, А4, А5, А6 соответственно;

1, 1, 2, 2,…, 6, 6 – положительные углы отклонения осей относительно номинального положения.

  1. При вращении ГИВУС вокруг оси чувствительности в положительном направлении (против часовой стрелки, если смотреть с конца вектора) выходная информация с измерителя А12, А3, А4, А5, А6) соответствует положительному значению параметра и наоборот.

  1. Относительная ориентация осей приборной системы координат и строительной системы координат изделия такова, что ось хп совпадает с отрицательным направлением оси zизд; ось уп с положительным направлением оси хизд; zп совпадает с отрицательным направлением оси уизд.

C гивус выходная информация в дискретном виде выдается с каждого измерителя (А1, А2, А3, А4, А5, А6) в виде унитарного кода – последовательности импульсов, транслируемых в БЦВК по электрически не связанным каналам. Каждый канал информации имеет две функциональные линии связи; по одной линии выдаются импульсы, соответствующие положительной проекции, а по другой линии, соответствующие отрицательной проекции угловой скорости на ось чувствительности измерителя [1, 3, 9, 21].


Рис. 2.3 - Ориентация осей чувствительности ГИВУС относительно осей приборной системы координат

 i соответствует 16

соответствует


Рис.2.4 - Положительные направления углов отклонения осей чувствительности измерителей относительно номинального положения

3 МАТЕМАТИЧЕСКИЕ МОДЕЛИ

3.1 Математическая модель упругого космического аппарата

Возьмем для рассмотрения космический аппарат, как абсолютно твердое тело, не содержащих каких-либо движущих масс (см. рис. 1.1) [1].

Если триэдр жестко связанных с телом осей Oxyz с началом координат в центре масс КА (связанная система координат - ССК) направить так, чтобы они совпали с главными центральными осями инерции, то центробежные моменты инерции обратятся в нуль и система уравнений Эйлера, описывающая динамику вращения КА вокруг центра масс, примет вид (3.1) [1, 3]:

(3.1)

Характеристики

Тип файла
Документ
Размер
11,22 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее