85310 (630730), страница 2
Текст из файла (страница 2)
3) Графический способ;
4)Min и max ф-ции: ф-ция f(x) ограничена, если огран. ее мн-во знач У, т.е. m,M: mf(x)M xX
mf(x) xX => огр. сн.; f(x)M, xX=> огр. св.
Обратные ф-ции
Если задано правило по которому каждому значению yY ставится в соответствие ед. знач. х, причем y=f(x), то в этом случае говорят, что на мн-ве Y определена ф-ция обратная ф-ции f(x) и обозначают такую ф-цию x=f^-1(y).
Предел ф-ции в точке
Свойства предела ф-ции в точке
Односторонние пределы ф-ции в т-ке:
Предел ф-ции в т-ке
Предел и непрерывность функции
Предел. Односторонний предел.
Предел ф-ции в точке
y=f(x) X
опр. {xn} X, xnx0
f(xn)A,=> f(x) в т. x0 (при , xnx0) предел = А
А=lim(xx0)f(x) или f(x)A при xx0
Т-ка x0 может и мн-ву Х.
Свойства предела ф-ции в точке
1) Если предел в т-ке сущ-ет, то он единственный
2) Если в тке х0 предел ф-ции f(x) lim(xx0)f(x)=A
lim(xx0)g(x)B=> то тогда в этой т-ке предел суммы, разности, произведения и частного. Отделение этих 2-х ф-ций.
а) lim(xx0)(f(x)g(x))=AB
б) lim(xx0)(f(x)g(x))=AB
в) lim(xx0)(f(x):g(x))=A/B
г) lim(xx0)C=C
д) lim(xx0)Cf(x)=CA
Док-во xnx0, lim(xx0)f(x)=A по опр. f(xn)A {f(xn)}
Односторонние пределы ф-ции в т-ке:
Опр. А - предел ф-ции f(x) справа от точки х0, если f(x)A при хх0, и x>x0
Формально это означает, что для любой посл-ти {xn}x0, вып-ся условие xn>x0, f(x)A. Обозначим f(x0+0) и f(x0+) lim(xx0+0)f(x)
И также с минусами.
Признак предела
Т-ма Для того чтобы f(x) имела предел в т-ке х0 необх., тогда в этой т-ке ф-ция f имеет совпадающ. Между собой одностор. предел (f(x0+)=f(x0-) (1), которые равны пределу ф-ции.
Док-во. f(x) имеет в т-ке х0 предел А, тогда f(x)A независимо от того приближается ли х к х0 по значению больше х0 или меньше это означает равенство (1)
Предел ф-ции в т-ке
Число А наз-ся пределом ф-ции в т-ке х0 если >0 найдется такое число В>0, для всех х отличных от х0 и (х-х0)<0 должно f(x)-A<
>0 из х-х0< должно быть
Пусть f(x)-x0<, если =, то х-х0 f(x)-x0<
Свойства пределов. Непрерывность ф-ции.
Ф-ция f(x) непрерывна в т-ке х0 если предельное значение в этой т-ке равно самому знач. в этой точке.
Предел и непрерывность функции
Пусть ф-ция f(x) определена на некотором пр-ке Х* и пусть точка х0Х или х0Х.
Опр. Число А наз-ся пределом ф-ции f(x) в точке х=х0, если для >0 >0 такое, что для всех хХ, хх0, удовлетвор. неравенству х-х0<, выполняется неравенство f(x)-A<.
Пример Используя определение, док-ть что ф-ция f(x)=C(C-некоторое число) в точке х=х0(х0-любое число) имеет предел, равный С, т.е. lim (xx0)C=C
Возьмем любое >0. Тогда для любого числа >0 выполняется треюуемое неравенство f(x)-C=C-C=0 lim(xx0)C=C
Свойства пределов. Непрерывность ф-ции.
Теорема. Пусть ф-ции f(x) и g(x) имеют в т-ке х0 пределы В и С. Тогда ф-ции f(x)g(x),f(x)g(x) и f(x)/g(x) (при С0) имеют в т-ке х0 пределы, равные соответственно ВС, ВС, В/С, т.е. lim[f(x)g(x)]= BC, lim[f(x)g(x)]= BC, lim[f(x)/g(x)]= B/C
Теорема также верна если х0 явл. , ,
Опр. Ф-ция f(x) наз-ся непрерыной в точке х=х0, если предел ф-ции и ее значение в этой точке равны, т.е. lim(xx0)f(x)=f(x0)
Теорема Пусть ф-ции f(x) и g(x) непрерывны в т-ке х0. Тогда ф-ции f(x)g(x), f(x)g(x) и f(x)/g(x) также непрерывны в этой т-ке.
10. Предел. Односторонний предел.
Опр.Числом А наз-ся предел f(x) в т-ке х0, если для любой окрестности А окрестность (х0):xокрестности (x0) выполняется условие f(x)окрестности.
Теорема Все определения предела эквивалентны между собой.
Опр. Число А называется пределом ф-ции f(x) справа от т.х0(правым предело f(x0)) если f(x)A при хх0, х>x0
Формально это означает, что для любой посл-ти сходящейся к х0 при xn>x0 выполняется условие f(xn)A
Запись: f(x0+o), f(x0+ ). lim(xx0+o)f(x) где запись xx0+o как раз означает стремление к х0 по мн-ву значений >чем х0.
Опр. Предел слева аналогично и исп-ся запись f(x0-o);f(x0-)
Теорема. Для того чтобы ф-ция f(x) имела предел в точке х0 необходимо и достаточно когда в этой т-ке ф-ция имеет совпадающие между собой одностороние пределы (f(x0+)=f(x0-)) значение которые равны пределу ф-ции, т.е. f(x0+)=
f(x0-)=lim(xx0)f(x)=A
Док-во
а) допустим ф-ция имеет в точке х0 предел равный А, тогда f(x) А независимо от того, приближается ли х к х0 по значению > x0 или <, а это означает равенство 1.
б) пусть односторонние пределы сущ-ют и равны f(x0+)=f(x0-) докажем, что просто предел. Возьмем произвольную {xn}х0 разобьем если это необходимо эту последовательность на две подпоследовательности.
1. члены которые нах-ся слева от х0 {x‘n};
2. члены которые нах-ся справа от х0 {х‘‘n};
x’nx0-o x’’nx0+o, т.к. односторонние пределы и равны, то f(x‘n)A и f(x‘‘n)A поэтому посл-ть значений ф-ций {f(xn)} которая также след. справа:
1){f(x‘n)} и {f(x‘‘n)} имеет f(xn)A на основании связи между сходимостью последовательностей
Пределы ф-ции на бесконечности
Два замечательных предела
Б/м ф-ции и их сравнения
Непрерывные ф-ции. Непрерывность.
11. Пределы ф-ции на бесконечности
Они нужны для исследования поведения ф-ции на переферии.
Опр. ф-ция f(x) имеет предел число А при x+ если {xn} которая к + соответствующая ей последовательность {f(xn)}A в этом случае мы пишем lim(x+)f(x)=A. Совершенно аналогично с -.
Опр. Будем говорить что ф-ция f(x) имеет пределом число А при x {f(xn)} сходится к А
Бесконечные пределы ф-ции
Вводятся как удобные соглашения в случае, когда конечные пределы не -ют.
Р-рим на премере: lim(xo+)(1/x)
Очевидно не сущ-ет, т.к. для {xn}+о посл-ть {f(xn)}={1/xn}, а числ. посл-ть сводятся к +.
Поэтому можно записать lim(xo+)1/x=+ что говорит о неограниченных возрастаниях предела ф-ции при приближении к 0.
Аналогично с -.
Более того символы + и - употребляются в качестве предела ф-ции в данной т-ке лишь условно и означают например, что если {xn}x0 то {f(xn)},
12. Два замечательных предела
1) lim(x0)sin/x=1
2) Явл. обобщением известного предела о посл-ти. Справедливо сл. предельное соотношение:
lim(n)(1+1/n)^n=e (1)
lim(n0)(1+x)^1/x=e (2)
t=1/x => при х0 t из предела (2) => lim(x) (1+1/x)^x=e (3)
Док-во
1)x+ n x:n=[x] => nx
Посколько при ув-нии основания и степени у показательной ф-ции, ф-ция возрастает, то можно записать новое неравенство (1/(n+1))^n(1+1/n)^x (1+1/n)^(n+1) (4)
Рассмотрим пос-ти стоящие справа и слева. Покажем что их предел число е. Заметим (х+, n)
lim(n)(1+1/(n+1))=lim(n)(1+1/(n+1))^n+1-1= lim(n)(1+1/(n+1))^n+1lim(n)1/(1+1/(n+1))=e
lim(n)(1+1/n)^n+1= lim(n)(1+1/n)^n lim(n)(1+1/n)=e1=e
2) x-. Сведем эту ситуацию к пред. Случаю путем замены переменной y=-x => y+, при x-.
lim(x-)(1+1/x)^x=lim(y+)(1-1/y)^-y= lim(y+)((y-1)/y)^y=lim(y+)(1+1/(y-1))^y=e
3) Пусть x произвольным образом это означает при любом любом выборе посл-ти xn сходящихся к мы должны иметь в силу (3) соотношение lim(x)(1+1/xn)^xn=e (5)
Условие 5~3, т.е расшифровка 3 на языке посл-ти. Выделим из посл-ти xn 2 подпосл-ти: {x‘n}+,
{x‘‘n}-. Для каждой посл-ти по доказанному в п.1 и п.2 справедливо предельное соотношение 5 если заменить xnx‘nx‘‘n. По т-ме о связи
13. Б/м ф-ции и их сравнения
Опр. Ф-ция (х) наз-ся б/м если ее предел в этой т-ке равен 0 из этого определения вытекает следующее св-во б/м ф-ций:
а) Алгебраическая сумма и произведение б/м ф-ций есть б/м ф-ции.
б) Произведение б/м ф-ции на ограниченную ф-цию есть б/м ф-ция, т.е. если (х)0 при хх0, а f(x) определена и ограничена ( С:(х)С)=> (х)(х)0 при хх0
Для того чтобы различать б/м по их скорости стремления к 0 вводят сл. понятие:
1) Если отношение 2-х б/м (х)/(х)0 при хх0 то говорят что б/м имеет более высокий порядок малости чем .
2) Если (х)/(х)A0 при хх0 (A-число), то (х) и (х) наз-ся б/м одного порядка.
3) если (х)/(х)1 , то (х) и (х) наз-ся эквивалентными б/м ((х)~(х)), при хх0.
4) Если (х)/^n(х)А0, то (х) наз-ся б/м n-ного порядка относительно (х).
Аналогичные определения для случаев: хх0-, хх0+, х-, х+ и х.
14. Непрерывные ф-ции. Непрерывность.
Опр. f(x) непрерывны Х0 и при этом ее предел в этой т-ке сущ-ет и равен знач. ф-ции в этой т-ке, т.е. lim(xx0)f(x)=f(x0)-непрерывность ф-ции в т-ке. Из определения вытекает что в случае непрерывности ф-ции в данной т-ке вычитание пределов сводится к вычит. знач. ф-ции в данной т-ке. Равенство lim(xx0)x=x0 (1‘). Т.е знак предела у непрерывной ф-ции можно вносить в аргумент ф-ции. Геометрически непрерывность ф-ции в т-ке х0 означает что ее график в этой т-ке не имеет разрыва. Если обозначить через у приращение ф-ции, т.е. у=f(x0+x)-f(x0) (приращение ф-ции в т. х0). «» - символ приращения.
Приращение аргумента в т-ке х0 это соответствует тому, что текущая т. х, то условие непрерывности в т-ке х0 записывается сл. образом lim(x0)y=0~ у0 (1‘‘). Если в т-ке х0 ф-ция непрерывна, то приращение ф-ции 0 приращение аргумента.
f(x) непрерывна в т-ке х0 <> y0 при х0.
Если понятие предела приводит к понятию непр. Ф-ции то понятие одностороннего предела приводит к понятию односторонней непр. точки.
Опр. Если f(x) имеет предел справа в т-ке х0(=f(x0+)) и этот предел равен значению ф-ции ф-ции в т-ке х0, т.е. f(x0+)=lim(xx0,x>x0)f(x)=f(x0), то ф-ция f(x) наз-ся непр. справа в т-ке х0.
Аналогично при вып-нии усл. f(x0-)=lim(xx0, x Ясно что справедлива сл.теорема вытекающая из связи односторонних пределов ф-ция f(x) непр. в т-ке х тогда, когда она непр. в этой т-ке, как справа, так и слева. f(x0-)=f(x0+)=f(x0) Опр. Ф-ция f(x) непрерывна на некотором пр-ке D, если в каждой т-ке этого пр-ка при этом, если пр-ток D содержит граничную т-ку, то будем подразумевать соотв. одностор. непр. ф-ции в этой т-ке. Пример Р-рим степенную производст. ф-цию Q=f(k)=k^1/2 Q-объем выпуска продукции, к – объем капитала. D(f)=R+=>f(0)=0 и очевидно f(0+) и равно 0 => что данная ф-ция непр. на своей обл. опр-ния. Большинство ф-ций исп-мых в эк-ке непр. Например непр. ф-ции означает, что при малом изменении капитала мало будет меняться и выпуск пр-ции (Q0 при k0). Ф-ции которые не явл. непр. наз-ют разрывными соотв. т-ки в которых ф-ция не явл. непр. наз-ся т-кой разрыва Классификация т-ки разрыва Непр. ф-ции на пр-ке Теорема ВЕЙЕРШТРАССА 15. Классификация т-ки разрыва Все т-ки р-рыва делятся на 3 вида: т. устранимого р-рыва; точки р-рыва 1-го , и 2-го рода. а) если в т-ке х0 оба односторонних предела, которые совпадают между собой f(x0+)= f(x0-), но f(x0), то такая т-ка наз-ся точкой устранимого р-рыва. Если х0 т-ка устранимого р-рыва, то можно перераспределить ф-цию f так чтобы она стала непр. в т-ке х0. Если по ф-ции f построить новую ф-цию положив для нее знач. f(x0)= f(x0-)=f(x0+) и сохранить знач. в др. т-ках, то получим исправл. f. б) если в т-ке х0 оба 1-стороних предела f(x0), которые не равны между собой f(x0+)f(x0-), то х0 наз-ся т-кой р-рыва первого рода. в) если в т-ке х0 хотя бы 1 из односторонних пределов ф-ции не или бесконечен, то х0 наз-ся т-кой р-рыва 2-го рода. При исслед. Ф-ции на непр. классификации возможных т-к р-рыва нужно применять во внимание сл. замечания: 1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния. 2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр. 3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва: график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги. I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти) Док-во использует опр-ние на языке и . Если f непр. в т-ке х0 то взяв любое >0 можно найти >0 f(x)-f(x0)< при х-х0< ~ f(x0)- II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)0 то окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0. III)Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке [a,b] и f(a)=A, f(b)=B причем AB => C(A,B) c(a,b):f(c)=C f(c)=f(c‘)=f(c‘‘). IV)Теорема о прохожд. непр. ф-ции через 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то т-ка с(a,b). Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана. Пусть f(d)0 [a,d] или [d,b] ф-ция f принимает значение разных знаков. Пусть для определ-ти [a,d] обозначим через [a1,b1]. Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку [a2,d2] продолжая этот процесс мы получим посл-ть вложения отрезков [a1,b1]>[a2,b2] длинна которых (a-b)/2^n0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)0 то по св-ву сохр. знаков в некоторой окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки [an,bn] с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков. Непр. ф-ции на пр-ке f непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)0 => f непр. на [a,b] и f(x)f(b)=0 (f(x)f(b)>0 в окр-ти х0) => с(a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны. Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. с>0:f(x)c x(a,b). Т-ма 2( о экстр. непр. ф-ции на отр.). Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. т-ка max X*:f(x*)f(x) x[a,b], т-ка min X_:f(x_)f(x) x[a,b]. Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки Контрпример 1. f(x)=1/2 на (0;1] f – неогр. на (0;1] хотя и непрерывны. Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(x(0;1))x=0, но т-ки x_(0;1):f(x_)=0, т-ки x*, хотя sup(x(0;1))x=1 Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр. Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0. Док-во т-мы 2. Обозначим E(f) – множиством значений ф-ии f(x) на отр. [a,b] по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при х[a,b])=M(<). InfE(f)= inff(x)=m(m>-). Для опр. докажем [a,b] f(x) достигает макс. на [a,b], т.е. х*:f(x)=M. Допустим противное, такой т-ки не и сл-но f(x) !0 Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C”