183635 (629891), страница 2

Файл №629891 183635 (Разработка динамических моделей для транспортно-производственной системы) 2 страница183635 (629891) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Система ограничений состоит из отдельных математических уравнений или неравенств, называемых балансовыми уравнениями или неравенствами.

Целевая функция связывает между собой различные величины модели. Как правило, в качестве цели выбирается экономический показатель (прибыль, рентабельность, себестоимость, валовая продукция и т.д.). Поэтому целевую функцию иногда называют экономической, критериальной. Целевая функция – функция многих переменных величин и может иметь свободный член.

Критерии оптимальности – экономический показатель, выражающийся при помощи целевой функции через другие экономические показатели. Одному и тому же критерию оптимальности могут соответствовать несколько разных, но эквивалентных целевых функций. Модели с одной и той же системой ограничений могут иметь различные критерии оптимальности и различные целевые функции.

Решением экономико-математической модели, или допустимым планом называется набор значений неизвестных, который удовлетворяет ее системе ограничений. Модель имеет множество решений, или множество допустимых планов, и среди них нужно найти единственное, удовлетворяющее системе ограничений и целевой функции. Допустимый план, удовлетворяющий целевой функции, называется оптимальным. Среди допустимых планов, удовлетворяющих целевой функции, как правило, имеется единственный план, для которого целевая функция и критерий оптимальности имеют максимальное или минимальное значение. Если модель задачи имеет множество оптимальных планов, то для каждого из них значение целевой функции одинаково.

Если экономико-математическая модель задачи линейна, то оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений.

Таким образом, для принятия оптимального решения любой экономической задачи необходимо построить ее экономико-математическую модель, по структуре включающую в себе систему ограничений, целевую функцию, критерий оптимальности и решение.

Для моделирования транспортно-производственных систем используется задачи линейного программирования, а именно транспортные задачи. Общая формулировка задачи имеет следующий вид: пусть осуществляется производство некоторого товара в пунктах A1, A2,…,Am. Объем производства товара в каждом пункте равен соответственно a1,a2,…,am. Товар необходимо доставить в магазины или потребителям, находящимся в других населенных пунктах: B1,B2,…,Bn. Известна потребность каждого потребителя в товаре: b1,b2,…,bn. Задана также стоимость Cij транспортировки товара из каждого пункта производства Ai каждому потребителю Bj. Требуется составить план завоза товара в магазины, обеспечивающий удовлетворение их спроса при минимальных транспортных издержках.

Методика построения экономико-математической модели состоит в том, чтобы экономическую сущность задачи представить математически, используя различные символы, переменные и постоянные величины, индексы и другие обозначения. Все условия задачи необходимо записать в виде уравнений или неравенств. Поэтому, в первую очередь необходимо определить систему переменных величин, которые могут для конкретной задачи обозначить искомый объем производства продукции на предприятии, количество перевозимого груза поставщиками конкретным потребителям [4].

2.2 Формальная постановка и математическая запись.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

Выше описаны условия задачи, которая может быть сведена к решению так называемой однопродуктовой многоэтапной транспортно-производственной модели. Рассматривается один продукт, который от пункта производства до конечного потребителя проходит несколько стадий транспортировки и переработки. Путем несложных преобразований, такую модель можно свести к классической транспортной задаче, методы решения которой описан ниже.

Формальная постановка и математическая запись задачи.

Дано:

Ai – множество наименований поставщиков;

Bj – множество наименований потребителей;

ai - объем произведенной продукции в i -ом пункте(I  N);

bj - платежеспособный спрос на продукцию в j-ом пункте (j  M);

Cij - затраты на транспортировку единицы продукции от i-го поставщика j-му потребителю.

Требуется найти такие объемы транспортировки продукции от каждого поставщика к каждому потребителю ( xi,j > 0, для i = N и j = M) ), при которых достигается минимум транспортных затрат (что при фиксированных ценах реализации продукции равносильно максимизации прибыли), то есть:

(1.1)

При этом должны соблюдаться условия:

- продукции должно быть вывезено не более произведенного количества:

, (1.2)

- платежеспособный спрос должен покрываться:

, (1.3)

Рассмотрим один из методов решения транспортной задачи – метод потенциалов, основанный на идее последовательного улучшения допустимого решения. В методе потенциалов, как и во многих других методах оптимизации, используется следующий прием: строится система оценок (цен-измерителей), позволяющая определить, является ли построенный план оптимальным (другими словами, построить признак оптимальности). Применительно к транспортной задаче признак оптимальности формулируется следующим образом: допустимый план перевозок тогда и только тогда является оптимальным, когда каждому пункту производства и потребления можно поставить в соответствие оценки (потенциалы), удовлетворяющие двум условиям:

Во-первых, разность оценок пунктов потребления ( vj) и производства ( ui), между которым запланированы перевозки, равна затратам на транспортировку единицы продукта ( Ci,j) между этими пунктами, т.е.

vj – ui= ci,j. для xi,j> 0

Во-вторых, аналогичные разности для всех остальных направлений (не вошедших в план) не превосходят затрат на транспортировку.

vj – ui< Ci,j. для xi,j= 0

По сути дела признак оптимальности представляет собой математическое выражение здравого смысла - если какая-то перевозка осуществляется, то цена в пункте потребления равна цене в пункте производства плюс транспортные затраты или (что одно и то же) разница цен на оптимальном направлении равна транспортным затратам. В случае выбора менее эффективного маршрута разница цен не покрывает транспортных затрат и получается убыток. С помощью сформулированного признака оптимальности можно не только проверить на оптимальность любой допустимый план, но, и в случае неоптимальности, указать способ улучшения этого плана. Покажем это на примере решения задачи, изложенной в данной ситуации, предварительно сделав два важных замечания.

Такой метод применим лишь для условий так называемых «закрытых» задач, т.е. когда мощности поставщиков и потребителей сбалансированы. В случае несбалансированности мощностей поставщиков и потребностей потребителей задача приводится к «закрытой» при помощи добавления дополнительного поставщика или потребителя и переноса ему излишков или недостатков продукции [4].

2.3 «Числовая» модель задачи.

В рассматриваемой ситуации Ai(количество поставщиков зерна) равно 3, и Bj (количество потребителей - мелькомбинаты) равно 2. Кроме этого зерно поступает от поставщиков к потребителям через посредников (элеваторы), число которых равно 3. В таблице 1 предоставлены данные по суммарные затраты на транспортировку и обработку зерна (в расчете на 1 ц) на каждом из элеваторов. Суммарно из всех пунктов производства можно поставить 100 тыс.ц. зерна, а элеваторы могут переработать 110 тыс. ц, а суммарные потребности мелькомбинатов равны 100 тыс. ц [2].

Таблица 1.

Потребители

Поставщики

Мощность элеваторов

Потребность мелькомбинатов

Михайловское

Лебедево

Озерное

Боровое

Мамонтово

Заря

14

14

15

35

Восход

16

11

9

45

Радуга

15

15

12

20

Михайлово

2

6

20

Лебедево

7

3

55

Озерное

4

9

25

20

55

25

40

60

3. Разработка динамических моделей для транспортно-производственной системы.

3.1 Однопродуктовая многоэтапная транспортно-производственная модель.

Возьмем из задачи, описанной выше, только половину условия:

Ai (количество поставщиков зерна) равно 3, и Bj (количество потребителей - элеваторов) равно 3. В таблице 2 предоставлены данные по суммарные затраты на транспортировку и обработку зерна (в расчете на 1 ц) на каждом из элеваторов. Суммарно из всех пунктов производства можно поставить 100 тыс.ц. зерна [2].

Таблица 2

Потребители

Поставщики

Михайловское

Лебедево

Озерное

Мощность

поставщиков

Заря

14

14

15

35

Восход

16

11

9

45

Радуга

15

15

12

20

Резерв

0

0

0

10

Потребности

потребителей

20

55

25

110

Задача, записанная выше называется однопродуктовой многоэтапной транспортно-производственной моделью. Для решения данной задачи воспользуемся методом северо-западного угла и занесем полученные данные в таблицу 3.

Таблица 3.

Потребители

Поставщики

Михайловское

Лебедево

Озерное

Мощность

поставщиков

Заря

14

20

14

15

15

35

Восход

16

11

40

9

5

45

Радуга

15

15

12

20

20

Потребности

потребителей

20

55

25

110

Для первоначального плана (табл. 2) суммарные затраты на транспортировку и обработку зерна составляют 1215 у.е.

Нетрудно убедиться, что в нашем случае при использовании тех же направлений другой допустимый план построить нельзя. Изменение объема перевозок в любой из занятых клеток немедленно приведет к возникновению дисбаланса. Другой допустимый план можно построить, использовав лишь незанятые клетки таблицы. Таких допустимых планов можно построить очень много и каждый из них будет характеризоваться своим значением целей функции. Возникает вопрос о способе целенаправленного построения новых планов с улучшенной целевой функцией. Его решение основано на потенциалах и сформулированном выше признаке оптимальности.

Используя принятые обозначения, запишем следующие соотношения между оценками для клеток, вошедших в план:

v1 - u1 = 14

v2 – u1 = 14

v2 - u2 = 11

v3 - u2 = 9

v3 - u3 = 12

v3 - u4 = 0

Число неизвестных в данной системе уравнений на единицу больше числа уравнений, поэтому решение может быть получено лишь с точностью до постоянного слагаемого. Приравняв значение одной из переменных какому-либо числу, однозначно находим значения других переменных.

Характеристики

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее