151015 (621543), страница 2
Текст из файла (страница 2)
(1.1.14’ )
будут фигурировать потенциалы ионизации Ik, которые равны энергии ионизации иона с зарядом Кe. Поскольку значения Ik для К>1 быстро возрастают , в области температур 1000…3000 К, характерной для низкотемпературной плазмы, будет в основном наблюдаться однократная ионизация атомов. Закон сохранения числа частиц и заряда α определенного сорта совместно с цепочкой уравнений Саха (1.1.14') представляет замкнутую систему уравнений, описывающую ионизационное равновесие в газовой плазме.
В качестве примера рассмотрим ионизацию атомов калия в аргоне. При неизменной температуре Т плазмы повышение исходного содержания атомов калия nA приведет к увеличению равновесной плотности электронов в плазме. Поскольку , в пренебрежении более высокими степенями ионизации атомов калия запишем систему ионизационных уравнений:
(1.1.15)(1.1.15’)(1.1.15’’)
где (1.1.15) – уравнение Саха для однократной ионизации; (1.1.15’) – закон сохранения числа частиц (исходное содержание присадки калия в результате реакций ионизации не меняется); (1.1.15’’) – закон сохранение заряда (концентрация электронов в системе определяется числом ионизованных атомов калия).
Вводя обозначение
(1.1.16)
и используя (1.1.15’) и (1.1.15’’), преобразуем (1.1.15) к виду
. (1.1.17)
Последнее уравнение имеет очевидное решение
, (1.1.18)
которое и определяет однократную ионизацию атомов калия в плазме по Саха.
На рис.1. показаны расчетные зависимости концентрации электронов в НТП, образованной атомами аргона и калия для температур плазмы Т= 1000, 2000, 3000 К, от исходного содержания атомарного калия nA.
Источниками электронов в высокотемпературном электронейтральном газе могут быть и частицы КДФ с малой работой выхода электронов W. В этом случае появляется специфическая плазменная среда – плазмозоль [7], т.е. система нейтральный молекулярный газ с высоким потенциалом ионизации + свободные электроны, эмиттированные частицами КДФ + заряженные макрочастицы, обменивающиеся электронами с газовой фазой. Отличительные черты такой системы: возможность приобретения частицами КДФ больших (макроскопических)
Рис.1. Ионизация атомов калия в аргоне (концентрационная зависимость)
зарядов, наличие у макрочастиц собственного объема, сравнимого с размерами микронеоднородностей в системе, фактически всегда наблюдаемая полидисперсность КДФ.
В связи с широким применением гетерогенных плазменных сред в ряде современных областей энергетики(МГД–генераторы на твердом топливе, управление процессом горения [8]) и технологии (высокотемпературные гетерогенные процессы [9], плазменное напыление [10] и др.), описание термоионизации в НТП с КДФ вызывают в настоящее время значительный интерес [11]. Возможность воздействия на ионизацию среды посредством частиц КДФ была доказана в экспериментах по измерению концентрации электронов в плазме углеводородных пламен [12,13].
Система идентичных частиц в буферном газе.
Наиболее простая модель плазмозоля [14] предполагает, что имеется “ансамбль” идентичных сферических частиц КДФ, обменивающихся электронами с химически нейтральным буферным (несущим) газом. Система неограниченна, и температура всех подсистем: газа, КДФ, электронов – постоянна и равна Т. Равновесная реакция ионизации макрочастицы с зарядовым числом
(1.2.1)
как и ранее, описывается методами расчета равновесных химических систем. Поскольку конденсированные частицы (КЧ) в такой модели представляют собой фактически гигантские молекулы, то в константы равновесия реакций (1.2.1) (соответствующие константы Саха) должна войти разность энергии до и после ионизации КЧ. Эта размерность и является потенциалом ионизации m – кратно заряженной частицы КДФ, который в моделях выбирается равным
, (1.2.2)
где W – работа выхода с поверхности вещества частиц; e – заряд электрона; rp – радиус сферической частицы.
Выбор потенциала ионизации частицы КДФ в виде (1.2.2) фактически означает предположение, что электрон, покидающий КЧ, затрачивает энергию, равную работе выхода с поверхности вещества незаряженной частицы, плюс работа, связанная с кулоновским взаимодействием между эмиттирующей КЧ и излучаемым электроном. Она равна кулоновской энергии электрона на поверхности КЧ только для уединенных макрочастиц или для достаточно разреженных систем. Действительно, в этом случае можно пренебречь эффектами объемного заряда и их влиянием на работу по удалению электрона.
На основе идеально-газовых представлений, как и ранее [(1.1.14), (1.1.14’), (1.1.15), (1.1.15’), (1.1.15’’)], получим соотношение для концентраций КЧ:
(1.2.3)
где Qm, Qm-1 – статистический вес соответственно m- и (m-1) – кратно ионизованной частицы КДФ; me – масса электрона; h и k – постоянные Планка и Больцмана.
Обозначив n0 концентрацию нейтральных КЧ в системе, построим цепочку уравнений Саха (1.2.3), считая что для макрочастиц Qm/Qm-1=1. Частицы плазмозоля с положительными зарядами дают последовательность уравнений, которыми определяются все более высокие степени ионизации отдельной КЧ. Таким образом, получаем набор уравнений для процессов термоэмиссии электрона с поверхности идентичных сферических частиц с зарядами qm-1=(m-1)e, где m = 1, 2, 3, …, :
(1.2.4)
В уравнениях (1.2.4) К обозначена константа Саха для процесса термоэмиссии электрона с поверхности незаряженной частицы плазмозоля, т.е. для реакции . Выражая из m – го уравнения
с помощью
, которое в свою очередь, можно выразить
из (m-1) – го уравнения, и так далее, продолжая этот процесс вплоть до первого уравнения системы (1.2.4), получаем
. (1.2.5)
После некоторых преобразований произведение в последней формуле запишем так:
. (1.2.6)
В данном случае введены обозначения
(1.2.7)
Аналогично для отрицательных степеней ионизации дисперсных частиц получим:
(1.2.8)
По последнему уравнению (1.2.8) найдем . Выразим далее
из предыдущего уравнения этой системы и подставим его в выражение для
. Продолжив, как и ранее, этот процесс вплоть до первого уравнения (1.2.8), окончательно получим
. (1.2.9)
Уравнения (1.2.5) и (1.2.9) связывают концентрацию нейтральных частиц КДФ в плазмозоле с концентрациями m –кратно ионизованных положительных(1.2.9) макрочастиц. Совместно с законом сохранения заряда
(1.2.10)
и условием сохранения полного числа КЧ в плазмозоле
(1.2.11)
(np – концентрация частиц КДФ) они позволяют определить замкнутую систему уравнений термоионизационного равновесия в плазмозоле идентичных частиц. Из (1.2.10) и (1.2.11) можно найти среднюю ионизацию частиц КДФ, т.е. их среднее зарядовое число:
(1.2.12)
и относительную концентрацию электронейтральных макрочастиц в системе
. (1.2.13)
Как показал Саясов, соотношения, аналогичные (1.2.12) и (1.2.13), могут быть преобразованы с помощью эллиптических θ – функций к удобному для математического анализа виду:
(1.2.14)
(1.2.15)
Здесь
(1.2.16)
m=1,2,… .
На основе таблиц θ –функций построены зависимости lg(ne/K) от lg(np/K) при
Lg(T)
4,42
3,42
2,42
1,42
0,42
-8 -7 -6 -5 -4 -3 -2
lg(rP)
Рис.2.Область применимости приближения Эйнбиндера в координатах lg(rp), lg(T)
различных значениях параметра σ2, охватывающие достаточно широкий диапазон изменения размеров КЧ rp и температур Т монодисперсного плазмозоля.
После некоторых преобразований приходим к формуле Эйнбиндера, которая достаточно точна для высоких степеней ионизации частиц.
На рис.2 в координатах (lg rp, lg T), изображена область применения формулы
(1.2.17)
к описанию ионизационного равновесия в плазмозоле идентичных частиц. Множество точек плоскости (rp, T), соответствующее заштрихованной области I, выделяет состояния плазмозоля, для которых с относительной погрешностью применима приближенная формула Эйнбиндера (1.2.17).
Эта формула является следствием идеально-газового приближения, т.е. получена без учета влияния микрополей на ионизацию частиц, а следовательно, корректна для систем газ – макрочастицы, в которых влиянием этих полей на ионизационные процессы можно пренебречь. Точность (1.2.17) повышается с усилением ионизации частиц КДФ, однако при этом все более начинают сказываться эффекты объемного заряда, что ограничивает его применимость “сверху” (в области больших зарядов свойства плазмозоля не могут аппроксимироваться идеально-газовым приближением).
Область II на рис.2, ограниченная координатными осями и линией ρ=1 (линия I), соответствует состояниям плазмозоля, которые = 2πσ2 ≤ 1, так что exp(-πρ) ≤ 0.1 и в (1.2.14) для среднего заряда КЧ логарифмическую производную d/dy(lnθ3(y, ρ)) удобнее представить в виде разложения по параметрам y΄ и ρ´ [15, с.96]:
(1.2.18)
Распределение частиц КДФ по зарядам можно найти, используя (1.33), по которой определяют также относительную концентрацию дисперсных частиц с зарядовым числом m. Оно совпадает с нормальным (гауссовским) распределением [16], в котором σ имеет смысл дисперсии распределения.
В случае малой дисперсии σ2<<1 или ρ≤1, т.е. состояний плазмозоля, соответствующих точкам области II, имеем резкое распределение по зарядам и термоионизационное равновесие лимитируется основной реакцией
. (1.2.19)
Здесь (E-Entier (целая часть) от y), т.е. большинство частиц в системе имеет кратность ионизации
и
, а средний заряд y - центр распределения Гаусса удовлетворяет неравенствам
≤ y ≤
. При высокой степени ионизации частиц ne/n=z>>1 приближение Эйнбиндера можно распространить на всю область параметров rp, np и значение y
z. Причем связь между ne – средней концентрацией электронов и средним зарядом конденсированной частицы в соответствии с (1.2.19)
(1.2.20)
где .
В случае сильной ионизации частиц , так что (1.2.20) фактически совпадает с формулой, полученной Сагденом и Тращем из решения кинетической задачи о термоэмиссии электронов с идентичных частиц с зарядом ze.