150686 (621337), страница 5
Текст из файла (страница 5)
– коэффициент торцового перекрытия.
Таким образом:
KF = KAKFKFKF = 11,41,071 = 1,494.
Тогда:
F1 = KFYFS1YβYε =
1,4943,90,858∙0,606 = 25,49 МПа,
F2 = KFYFS2YβYε =
1,4943,6450,0,858∙0,606 = 23,823 МПа.
13.2 Допускаемые напряжения в проверочном расчете на изгиб.
Допускаемым напряжением FP определяются по формуле:
FP =
YNYδYRYX ,
где Flimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа определяется по формуле:
Flimb =0FlimbYTYzYgYdYA ,
где 0Flimb – предел выносливости при отнулевом цикле изгиба,
для колес из стали марки 40Х, подверженных улучшению 0Flimb = 1,75ННВ МПа.
0Flimb1 = 1,75*265 = 463,75МПа. 0Flimb2 = 1,75*250=437,5 МПа.
YT принимают YT1 = YT2 = 1, поскольку в технологии изготовления шестерни и колеса нет отступлений от примечаний к соответствующим табл. – коэффициент, учитывающий технологию изготовления;
Yz – коэффициент, учитывающий способ получения заготовки зубчатого колеса для поковки Yz1 = 1 и Yz2 = 1;
Yg – коэффициент, учитывающий влияние шлифования передней поверхности зуба Yg1 = Yg2 = 1, так как шлифование не используется;
Yd – коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности, Yd1 = Yd2 = 1, так как отсутствует деформационное упрочнение;
YA = 1– коэффициент, учитывающий влияние двустороннего приложения нагрузки так как одностороннее приложение нагрузки.
Тогда:
Flimb1 =0Flimb1YTYzYgYdYA = 463,7511111 = 463,75 МПа;
Flimb2 =0Flimb2YTYzYgYdYA = 437,511111 = 437,5 МПа.
SF = 1,7 – коэффициент запаса прочности определяется в зависимости от способа термической и химико-термической обработки;
YN – коэффициент долговечности находится по формуле:
но не менее 1,
где qF – показатель степени;
NFlim – базовое число циклов перемены напряжений, NFlim = 4106 циклов;
NК – суммарное число циклов перемены напряжений, уже определены:
NK1 = 1069∙106 циклов,
NK2 = 428∙106 циклов.
Так как
NK1 > NFlim = 4106 и NK2 > NFlim, то YN1 = YN2 =1.
Yδ – коэффициент, учитывающий градиент напряжения и чувствительность материала к концентрации напряжений находится в зависимости от значения модуля m по формуле:
Yδ = 1,082 – 0,172∙lgm = 1,082 – 0,172∙lg2,5= 1,014.
YR – коэффициент, учитывающий шероховатость переходной поверхности: при улучшенииYR1,2 = 1,2.
YX – коэффициент, учитывающий размеры зубчатого колеса определяется по формуле:
YX1 = 1,05 – 0,000125∙d1 = 1,05 – 0,00012572,165 = 1,041,
YX2 = 1,05 – 0,000125∙d2 = 1,05 – 0,000125177,835 = 1,028.
Таким образом:
МПа,
МПа.
Сопоставим расчетные и допускаемые напряжения на изгиб:
F1 = 25,49 < FP1 = 345,545,
F2 =23,823 < FP2 = 321,915.
Условие выполняется.
13.3 Расчет на прочность при изгибе максимальной нагрузкой
Прочность зубьев, необходимая для предотвращения остаточных деформаций, хрупкого излома или образования первичных трещин в поверхностном слое, определяют сопоставлением расчетного (максимального местного) и допускаемого напряжений изгиба в опасном сечении при действии максимальной нагрузки:
Fmax FPmax.
Расчетное местное напряжение Fmax, определяют по формуле:
,
где КAS = 3 – коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;
КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);
Тмах / TF = Кпер = 1,45(исходные данные).
Таким образом:
МПа,
МПа.
Допускаемое напряжение FPmax определяют раздельно для зубчатых колес (шестерни и колеса) по формуле:
,
где σFSt – предельное напряжение зубьев при изгибе максимальной нагрузкой, МПа; определяем по приближённой зависимости:
σFSt ≈ σFlimbYNmaxKSt
где σFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа;
σFlimb1 = 463,75 МПа σFlimb2 = 437,5 МПа
YNmax1,2 = 4 (т.к. qF = 6)– коэффициент, учитывающий влияние деформационного упрочнения.
KSt1,2 = 1.3 (т.к. qF = 6)– коэффициент, учитывающий различие между предельными напряжениями, определёнными при ударном, однократном нагружении и при числе ударных нагружений N = 103;
Тогда:
σFSt1 ≈ σFlim1YNmax1KSt1 = 463,75∙4∙1,3 = 2411,5МПа,
σFSt2 ≈ σFlimb2YNmax2KSt2 = 437,541,3 = 2275 МПа.
SFSt = 1,75 – коэффициент запаса прочности;
YX – коэффициент учитывающий размер зубчатого колеса, определяется по формуле. YX1 = 1,041, YX2 = 1,028 (определены ранее).
коэффициент YRSt= 1 и отношение YSt /YStT = 1.
Получим:
Проверка условия прочности:
Fmax1 ≤ FPmax1 → 110,882 МПа ≤ 1434,498 МПа – условие выполнено;
Fmax2 ≤ FPmax2 → 103,63 МПа ≤ 1336,4 МПа – условие выполнено.
Проектный расчет валов редуктора
Расчет выполняем на кручение по пониженным допускаемым напряжениям.
Крутящие моменты в поперечных сечениях валов:
ведущего Тк1=29,6.103 Н.мм;
промежуточного Тк2=72,157.103Н.мм;
выходного Тк3=175,901.103Н.мм;
Ведущий вал.
Диаметр выходного конца при допускаемом напряжении [τк] = 25МПа
Принимаем dв1=18мм.
Диаметр под подшипниками примем dп1=25мм; диаметр шейки для упора подшипника dn1=25мм.
Промежуточный вал.
Определяем диаметр под колесо dк2 при допускаемом напряжении [τк] = 25МПа
Принимаем dк2=235мм; диаметр под подшипники dп2=30мм.
Выходной вал.
Определяем диаметр выходного конца вала dв3 при допускаемом напряжении [τк] = 15МПа
Примем dв3=40мм; диаметр под подшипники dп3=45мм; диаметр под цилиндрическое зубчатое колесо dк3=48мм; диаметр шейки для упора подшипника dδn3=51мм
Проверочный расчет тихоходного (выходного) вала
Рассчитаем нагрузки, возникающие в зубчатом зацеплении [3].
Окружное усилие:
.
Радиальное усилие:
Осевое усилие равно нулю, так как передача прямозубая.
Определим реакции в опорах.
;
,
;
.
Из эпюры изгибающих моментов видно, что наиболее опасное сечение – в месте шпоночного паза для установки зубчатого колеса. Рассчитаем коэффициент запаса в этом сечении.
Условие прочности вала имеет вид
,
где n – общий коэффициент запаса в рассматриваемом сечении вала;
[n] – допускаемый коэффициент запаса, [n] = 2,5;
Общий коэффициент запаса определяется по формуле (стр. 95 [2])
,
где n – коэффициент запаса прочности по нормальным напряжениям;
n –коэффициент запаса прочности по касательным напряжениям.
При длительном сроке службы вала по [2]
,
,
где т,т – средние значения цикла нормальных напряжений изгиба и кручения,по [2]:
т=v= ,
где Мк – крутящий момент на валу;
Wкнетто – момент сопротивления кручению, по [2]:
,
где b – ширина шпоночного паза;
t1 – глубина шпоночного паза вала;
d – диаметр вала под колесом.
v и v – амплитуды циклов нормальных и касательных напряжений.
,
где Ми – изгибающий момент на валу;
Wкнетто – момент сопротивления изгибу, по [2]:
-1 и -1 – пределы выносливости материала вала при симметричном цикле изгиба и кручения, для углеродистой стали по [2]:
-1 = 0,43в =0,43*610=262,3Н/мм2, -1 =0,58-1 =0,58*262,3=152 Н/мм2;
т=0, так как осевое усилие на колесе равно нулю;
и – коэффициенты, характеризующие чувствительность материала к асимметрии цикла изменения напряжений изгиба и кручения, для для углеродистых сталей, = 0,1;
– коэффициент, учитывающий влияние шероховатости поверхности;
, – масштабные факторы для нормальных и касательных напряжений, по таб. [2] =0,82, =0,7;
k, k - эффективный коэффициенты концентрации нормальных и касательных напряжений по таб. [2] k=1,6, k=1,5;
После подстановки:
Коэффициент запаса прочности:
> [n]=2,5
Условие прочности выполнено.
Выбор подшипников
На ведущем валу по справочнику [1] выбираем шариковые радиальные однорядные подшипники средней серии диаметров ГОСТ 8338-75.
D=62мм; d=25мм; В=17мм, где
D – диаметр наружного кольца подшипника,
d – диаметр внутреннего кольца подшипника,
В – ширина подшипника.
На промежуточном валу по справочнику [1] выбираем шариковые радиальные однорядные подшипники средней серии диаметров ГОСТ 8338-75.
D=72мм; d=30мм; В=19мм.
На выходном валу по справочнику [1] выбираем шариковые радиальные однорядные подшипники особолегкой серии диаметров ГОСТ 8338-75.
D=85мм; d=45мм; В=19мм.
Расчет подшипников выходного вала на долговечность.
Расчет подшипников на долговечность производится по формуле [2]:
, где
С – динамическая грузоподъемность подшипника, С=16000
р – показатель степени. При точечном контакте р=3,
Р – эквивалентная нагрузка.
Р= ,при
и Fa,
Fr – радиальная нагрузка, действующая на подшипник,