145008 (620878), страница 3
Текст из файла (страница 3)
Принимаем с=1,08, которое практически соответствует заданному с=1,1
Проверим отношение ширины свеса сжатого пояса к его толщине из соображений местной устойчивости ( по п.7.24 СНиП II-23-81* ):
принятое соотношение размеров пояса не удовлетворяет условию его местной устойчивости. Увеличим толщину поясов балки до tf = 24 мм и произведем новый расчет.
Принимаем толщину поясов балки tf = 24 мм, тогда высота стенки балки будет равной
см,
Момент инерции стенки балки
см4.
Момент инерции, приходящийся на поясные листы
см4.
Момент инерции поясных листов балки относительно ее нейтральной оси, пренебрегая моментом инерции поясов относительно их собственной оси ввиду его малости, будет равен
,
где h - расстояние между параллельными осями поясов балки
см.
Отсюда получаем требуемую площадь сечения поясов балки
см2.
Находим требуемое значение ширины пояса балки:
см.
Окончательно примем bf = 550 мм.
Принимаем пояса из универсальной стали 550х24 мм, для которой , что находится в пределах рекомендуемого отношения.
Уточняем принятый ранее коэффициент учета пластической работы с исходя из:
;
;
Принимаем с=1,09, которое практически соответствует заданному с=1,1
Проверим отношение ширины свеса сжатого пояса к его толщине из соображений местной устойчивости (по п.7.24 СНиП II-23-81*):
принятое соотношение размеров пояса удовлетворяет условию его местной устойчивости.
Проверяем несущую способность балки исходя из устойчивости стенки в области пластических деформаций балки в месте действия максимального момента, где Q=0 и τ=0.
;
где
Подобранное сечение балки проверяем на прочность. Определим момент инерции балки:
см4.
Определим момент сопротивления балки:
см3.
Проверим нормальные напряжения в балке по следующей формуле:
,
кН/см2 < 231 = 23 кН/см2,
следовательно, подобранное сечение удовлетворяет условию прочности и не имеет недонапряжений больше 5%.
Проверку прогиба делать нет необходимости, так как принятая высота сечения главной балки больше минимальной и регламентированный прогиб будет обеспечен.
3.1 Изменение сечения главной балки по длине
В разделе (3) я считал, что сечение главной балки остается постоянным по всей длине. Теперь рассчитаю балку с измененным сечением, путем изменения ширины поясов по длине.
Сечение составной балки, подобранное по максимальному изгибающему моменту, можно уменьшить в местах снижения моментов (у опор). Однако каждое изменение сечения, дающее экономию металла, несколько увеличивает трудоемкость изготовления балки, и поэтому оно экономически целесообразно для балок пролетом более 12 м, что справедливо для нашего случая (16 м).
При равномерной нагрузке наивыгоднейшее по расходу стали место изменения сечения поясов однопролетной сварной балки находится на расстоянии примерно l/6 пролета балки от опоры: м.
Определим момент и поперечную силу в месте изменения сечения 1-1:
кНм = 297345 кНсм;
кН.
Производимый подбор измененного сечения ведем по упругой стадии работы материала. Определим требуемый момент сопротивления и момент инерции измененного сечения исходя из прочности сварного стыкового шва, работающего на растяжение:
см3;
где Rwy = 0,85·R = 0,85·23 = 19,55
см4.
Определим требуемый момент поясов, учитывая то, что момент инерции стенки остался тем же:
см4.
Требуемая площадь сечения поясов балки:
см2.
Находим требуемое значение ширины пояса:
см.
Окончательно примем bfx = 360 мм.
Принимаем пояса из универсальной стали 360х24 мм
Принятый пояс удовлетворяет условиям:
.
Проверим на прочность подобранное сечение балки. Определим момент инерции балки:
см4.
Определим момент сопротивления балки:
см3.
Тогда
кН/см2 < 231 = 23 кН/см2,
Следовательно выбранная балка проходит по нормальному напряжению в месте изменения сечения.
3.2. Проверка прочности и общей устойчивости главной балки
3.2.1 Проведем проверку прочности балки
Проверка максимального нормального напряжения в середине балки и в месте изменения сечения была выполнена выше.
Проверим максимальное касательное напряжение в стенке на нейтральной оси сечения около опоры балки:
где S-статический момент полусечения балки
см3.
кН/см2 < 13,31 = RSc.
Проверим местные напряжения в стенке под балками настила:
,
где F – расчетные значения опорных реакций балок настила:
,
где q =72,63 кН/м – расчетная нагрузка на балку настила c учетом собственного веса балки;
а = 0,9 – шаг балок настила,
lloc – длина передачи нагрузки на стенку главной балки:
см.
кН/см2 < Ryc = 23 кН/см2.
Наличие местных напряжений, действующих на стенку балки, требует проверки совместного действия нормальных, касательных и местных напряжений на уровне поясного шва и под балкой настила по уменьшенному сечению вблизи места изменения сечения пояса. В рассматриваемом примере такого места нет, так как под ближайшей балкой настила будет стоять ребро жесткости, которое воспринимает давление балок настила, и передачи локального давления на стенку в этом месте не будет. Поэтому проверяем приведенные напряжения в месте изменения сечения 1-1 балки (где они будут максимальны) по формуле:
,
где
кН/см2,
кН/см2
где
см3,
тогда, получим
кН/см2
кН/см2.
Из этих проверок следует, что прочность балки обеспечена.
3.2.2 Проверяем общую устойчивость балки
Проверим общую устойчивость в месте действия максимальных нормальных напряжений, принимая за расчетный пролет lef = 90 см - расстояние между балками настила. Условие устойчивости записывается в виде:
,
где lef – расчетная длина балки между связями, препятствующими поперечным смещениям сжатого пояса балки;
bf – ширина сжатого пояса (ширина полки);
tf – толщина сжатого пояса (толщина полки);
hef – расстояние (высота) между осями поясных листов.
Условия применения уравнения устойчивости плоской формы изгиба:
применение формулы возможно.
При =0 и с1х=сх получаем
.
Проверим общую устойчивость в месте уменьшенного сечения главной балки (балка работает упруго и ):
.
Обе проверки показали, что общая устойчивость балки обеспечина.
3.2.3 Проверка прогиба
Проверку главной балки по второму предельному состоянию (проверку прогиба) производить нет надобности, так как принятая высота балки h=140 см > см.
3.3 Проверка местной устойчивости сжатого пояса и стенки сварной балки
3.3.1 Проверка устойчивости сжатого пояса
Эту проверка производится в месте возникновения максимальных нормальных напряжений – в середине пролета главной балки.
где bef – расстояние от грани стенки до края поясного листа – полки:
- свес пояса
Поскольку <
, то можно считать, что местная устойчивость сжатой полки балки обеспечена.
3.3.2 Проверка устойчивости стенки
Определим необходимость укрепления стенки поперечными ребрами жесткости по п. 7.10 СНиПа II-23-81*. Так по СНиПу II-23-81* стенки балок следует укреплять поперечными ребрами жесткости, если значение условной гибкости стенки балкиw превышает 2,2.
поперечные ребра жесткости необходимы. Кроме того, в зоне учета пластических деформаций необходима постановка ребер жесткости под каждой балкой настила, так как местные напряжения в стенке в этой зоне недопустимы.
Определим длину зоны использования пластических деформаций в стенке:
см,
т.е. по 1937 мм с каждой стороны от оси симметрии.
Расстановку вертикальных ребер жесткости принимаем согласно рисунку на стр. 30, через промежуток а = 270 см. Это расстояние удовлетворяет условию СНиПа II-23-81* (п. 7.10), которое между основными поперечными ребрами не должно превышать 2·hw, т.к.
см.
По п. 7.3 СНиП II-23-81, так какw = 3,76 > 2,5, то проверка устойчивости стенок обязательна. Проверку будем вести по п. 7.4 – 7.6 СНиПа II-23-81*.
Расстановка поперечных ребер жесткости главной балки, сечения проверки устойчивости стенки.
Проверим местную устойчивость стенки в сечении 2-2, для этого определяем средние значения M2 и Q2 на расстоянии х2 = 395 см от опоры (под балкой настила), что почти совпадает с рекомендацией расстояния в от края отсека.
В этом сечении возникают следующие усилия:
кНм,
кН.
И соответствующие этим усилиям напряжения будут равны:
кН/см2,
кН/см2.
Проверим местные напряжения в стенке под балками настила: