115359 (617502), страница 3

Файл №617502 115359 (Изучение вопросов биотехнологии в курсе химии средней школы) 3 страница115359 (617502) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Клонирование и экспрессия генов в различных организмах

В настоящее время разработаны системы клонирования в бактериях, дрожжах, грибах, растениях и млекопитающих. Особый интерес с экономической точки зрения представляют системы клонирования генов в грамположительных бактериях, многие из которых являются сверхпродуцентами важнейших химических соединений[7]. Значительных успехов в биоиндустрии удалось достичь с клетками Bacillus subtilis, стрептомиценами и Sacchromyces cerevisiae.

Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в E.coli, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид E.coli и требуемый репликон (из бактерий, дрожжей и др.), и первоначально клонируют с последующим отбором требуемых генов в хорошо изученной системе. Затем выделенные рекомбинантные плазмиды вводят в новый организм.

Инсулин – гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний – сахарному диабету.

Обычно поджелудочная железа крупного рогатого скота и свиней не используется в мясной и консервной промышленности и поставляется на фармацевтические предприятия, где проводят экстракцию гормона. Для получения 100 г. кристаллического инсулина необходимо 800–1000 кг исходного сырья. В 1978 г. появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клетках E.coli (рис. 6).

Рис. 6. Экспрессия гена проинсулина человека в составе гибридного белка с β-галактозидазой[14]

Был синтезирован и ген соматостатина – гормона гипоталамуса. Соматостатин подавляет выделение инсулина и гормона роста человека. В Национальном медицинском центре «Хоуп» (Калифорния) был осуществлен химико-ферментативный синтез гена длиной в 42 нуклеотида, способного кодировать соматостатин. Синтетический ген соматостатина был встроен в плазмиду pBR322 E.coli вблизи конца гена, кодирующего фермент β-галактозидазу. Между двумя генами был помещен кодон метионина. После введения рекомбинантной плазмиды в бактериальную клетку кишечная палочка стала синтезировать гибридный белок. Часть его (соматостатин) затем отщепляли от β-галактозидазы BrCN. Первый синтез соматостатина генно-инженерным способом был осуществлен в 1977 г. Бойером. Выход гормона составил 10 000 молекул на одну клетку. Из 100 г. биомассы E.coli, выращенной в ферментере объемом 8 л, удалось выделить 5 мг соматостатина, т.е. столько, сколько можно его выделить из 100 кг овечьих мозгов.

Соматотропин (или гормон роста человека ГРЧ) секретируется передней долей гипофиза. Его недостаток приводит к заболеванию – гипофизарной карликовости (1 случай на 5000 человек). Обычно его получают из гипофиза трупов, но в недостаточном количестве. Гормона хватает лишь для лечения 1/3 случаев гипофизарной карликовости в развитых странах. Препарат из трупного материала представляет собой смесь из нескольких форм. Это приводило к тому, что у 30% больных, получавших препарат, против гормона вырабатывались антитела, сводившие на нет его биологическую активность. Принимая во внимание это обстоятельство, в настоящее время ГРЧ синтезируют методами генетической инженерии в специально сконструированных клетках бактерий. Биосинтез ГРЧ был осуществлен в 1979 г. Д. Гедделем с сотрудниками. Конечный выход гормона составил 2,4 мкг на 1 мл культуры, что составляет 100 000 молекул гормона на клетку.

Проблема введения генов в клетки млекопитающих очень важна для исследования функционирования генов высших эукариот[7].

Предварительно клонированные гены вводят в клетку животных различными путями. Суть одного из них состоит в трансформации клеток требуемым геном, соединенным с одним из генов, для которых осуществляется селекция. Для идентификации и последующего размножения клеток, содержащих интегрированную ДНК, был разработан метод, получивший название метода маркера. Примером может служить метод получения клеток, дефектных по синтезу фермента тимидинкиназы (ТК--клетки). Такие клетки трансформировались фрагментами ДНК вируса герпеса (HSV), содержащего ген фермента ТК, и после трансформации они приобретали способность к синтезу фермента на селективной среде, т.е. становились ТК+-клетками. Клетки ТК+ легко отличаются от клеток ТК-, поскольку способны расти на средах с аминоптерином (ингибитор, блокирующий определенные стадии биосинтеза нуклеотидов). Следовательно, в данном случае для трансформации клеток животных были использованы гибриды бактериальных плазмид с геном ТК из вируса герпеса. Для этого предварительно проводили клонирование и идентификацию генов в клетках E.coli и затем полученная рекомбинантная плазмида вводилась в ТКклетки.

Представляют немаловажный интерес микроинъекции ДНК непосредственно в ядро клетки. Её осуществляют с помощью специальной пипетки (внутренний диаметр её около 1 мкм), а количество инъецированного раствора ДНК составляет 1–2 пкл. Так, плазмиды, содержащие фрагмент вируса герпеса с геном тимидинкиназы, и плазмиды pBR322 были инъецированы в ТК-клетки, при этом ТК-ген проник в ядра и нормально в них реплицировался. Микроинъекцию клонированных генов проводят в один или оба пронуклеуса только что оплодотворенной яйцеклетки мыши. После инъекции яйцеклетку немедленно имплантируют в яйцевод приемной матери или дают возможность развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку. Таким образом, были инъецированы гены интерферона и инсулина человека, ген глобина кролика, ген тимидинкиназного вируса герпеса и кДНК вируса лейкемии мышей. Несмотря на определенные успехи в области интеграции чужеродных генов в эмбриональные клетки животных, до сих пор не удалось встроить чужеродную ДНК в заданный участок хромосомы, вытеснить ген и заменить его новой нуклеотидной последовательность, подчинить новый ген системе регуляции организма.

Применение методов генетической инженерии в животноводстве открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшение качества продукции и др. Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, – трансгеном. Продукт этого гена (белок) является трансгенным. Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создавать трансгенные линии.

Генетический анализ родившихся трансгенных животных и полученного от них потомства показал, что, несмотря на инъекцию ДНК на ранних стадиях, в трансгенных линиях могут появляться так называемые мозаики. К мозаикам относят животных, происходящих из одной зиготы, но имеющих разные генотипы. Подсчитано, что около 30% первичных трансгенных животных, полученных методом микроинъекции ДНК, – мозаики, что затрудняет создание чистых трансгенных линий животных.

Первые трансгенные мыши с ГР были получены в 1982 г. У них отмечалось повышение скорости роста и увеличение конечной живой массы. Однако у трансгенных свиней с геном ГР (1989) увеличение роста не наблюдалось.

По данным Л.К. Эрнста (1996), у трансгенных свиней с геном рилизинг-фактора гормона роста (РФ ГР) конечная живая масса была на 15,7% выше по сравнению с контрольными животными. Однако у трансгенных овец с генами Гр и РФ ГР, несмотря на повышенный уровень ГР, скорость роста не увеличивалась.

Одна из важнейших задач использования трансгенных животных в медицине – получение биологически активных соединений за счет включения в клетки организма генов, вызывающих у них синтез новых белков.

В Эдинбурге в 1992 г. были выведены трансгенные овцы с геном α-1-антитрипсина человека и β-глобулиновым промотором. Содержание этого белка у разных трансгенных овец составляло от 1 до 35 г./л, что соответствует половине всех белков в молоке. При таком уровне продукции белка может быть получено около 10 кг трансгенного белка от одного животного в год, что достаточно для 50 пациентов при лечении эмфиземы легких. В России группой ученых под руководством Л.К. Эрнста получены трансгенные овцы с геном химозина, в 1 л молока которых содержится 200–300 мг химозина – основного компонента для производства сыра. Крупное достижение сделано учёными научного центра, в котором была создана первая клонированная овечка – Долли. Исследователи из института Рослина произвели пять поколений птиц, в яичном белке которых содержатся человеческий интерферон и miR24 антитела для борьбы с меланомой[20].

Генно-инженерные методы, в частности технология рекомбинантных ДНК, позволяют создавать новые генотипы и, следовательно, новые формы растений гораздо быстрее, чем классические методы селекции. Кроме того, появляется возможность целенаправленного изменения генотипа – трансформации – благодаря введению определенных генов.

Формальным явлением генетической инженерии растений считается получение первого в мире химерного растения – санбина (sunbeen) как результат переноса гена запасного белка бобовых (фазеолина) в геном подсолнечника (sunflower+been) [12].

Получение растений с новыми свойствами из трансформированных клеток (регенерация) возможно благодаря их свойству тотипотентности, т.е. способности развиваться в целое растение.

Перенос генов в растительные клетки, так же как и в клетки животных, и их встраивание в геном растений (трансформация) осуществляются главным образом благодаря специфическим структурам – векторам.

Некоторые виды агробактерий (Agrobacteria) могут заражать двудольные растения, вызывая образование опухолей – корончатых галлов (рис. 7).

Одним из самых сильных индукторов опухолей служит почвенная бактерия A.tumefaciens[12]. Способность этой бактерии к образованию опухоли связана с большой внехромосомной плазмидой, получившей название Ti-плазмида (от англ. tumor inducing – индуцирующие опухоль). Ti-плазмиды – это естественные векторы для генов, обладающие всеми функциями, необходимыми для переноса, стабильного включения и экспрессии генетической информации в растениях. Они имеют широкий круг хозяев.

После заражения часть Ti-плазмиды встречается в хромосомах клеток растения-хозяина (М. Монтесю и Д. Шелл [6])

Недостаток этих плазмид состоит в том, что некоторые гены, находящиеся в Т-ДНК, заставляют расти клетки растений независимо от гормонов, вносимых в питательную среду, на которой культивируются данные клетки. В связи с этим очень трудно регенерировать нормальное растение из клеток, содержащих полную последовательность Т-ДНК. Другой недостаток – большие размеры Ti-плазмиды, из-за которых затруднены какие-либо манипуляции с ней, поэтому вставить ген в плазмиду традиционными способами невозможно.

В настоящее время конструируются производные Ti-плазмиды, в которых оставляют регуляторный участок Т-области, а вместо её структурных генов вшивают структурную часть гена, который надо ввести в растение. Такие гены с позиции их регенерации безвредны для растений (рис 8).

Существуют и другие бактерии (A.rhizogenes), вызывающие усиленное образование корешков при заражении растений. За этот процесс ответственны содержащиеся в них так называемые Ri-плазмиды (от англ. root inducing – индуцирующий корни). Ri-плазмиды выгодно отличаются от Тi-плазмид тем, что они служат естественными безвредными векторами, так как трансформированные с их помощью растительные клетки сохраняют способность к морфогенезу и к регенерации здоровых растений. В связи с этим Ri-плазмиды в данный момент рассматриваются как более перспективные векторы.

Подавляющее большинство фитовирусов в качестве носителя генетической информации содержат РНК. Только 1–2% вирусов, инфицирующих растения, относятся к ДНК-содержащим. Именно эти вирусы удобны для использования в технологии рекомбинантных ДНК, а также в качестве векторов. Наиболее изученный представитель группы вирусов с двухцепочечной ДНК – вирус мозаики цветной капусты (ВМЦК), поражающий в основном растения семейства крестоцветные. Обычно фитовирусы реплицируются с образованием большого числа копий молекул нуклеиновых кислот – 106 на зараженную клетку.

Поэтому фитовирусы представляют собой очень эффективные средства для получения хорошей экспрессии чужеродного гена. Однако вирусы в качестве векторов обладают и существенными недостатками: имеют небольшую емкость, патогенны и неспособны встраиваться в хромосомы хозяина.

Методы прямого переноса генов в растение возникли благодаря появлению специфического объекта – изолированных протопластов, т.е. клеток, лишенных целлюлозной стенки.

  1. Трансформация растительных протопластов осуществляется благодаря комбинации методик кальциевой преципитации ДНК и слияния протопластов. Для трансформации может быть использован практически любой ДНК-вектор.

  2. Культуру протопластов на начальной стадии её роста заражают агробактериями, которые используют в качестве векторов.

  3. Микроинъекции ДНК. Аналогичен методу микроинъекций животных клеток. Этот метод можно рассматривать как наиболее универсальный. Эффективность трансформации растительных клеток – 10–20% независимо от типа вектора. Трансформация не видоспецифична, возможен перенос генов в любое растение.

  4. Электропорация. Метод основан на повышении проницаемости биомембран за счет действия импульсов высокого напряжения. В результате молекулы ДНК проникают в клетки через поры в клеточной мембране.

  5. Упаковка в липосомы. Это один из методов, позволяющих защитить экзогенный генетический материал от разрушения нуклеазами растительной клетки. Липосомы – сферические тельца, оболочки которых образованы фосфолипидами.

  6. Метод биологической баллистики[6]. Это один из самых эффективных методов трансформации однодольных растений. Исходный материал для трансформации – суспензионная культура, каллусная ткань или 4–5-дневные культивируемые незрелые зародыши однодольных. Метод основан на напылении ДНК-вектора на мельчайшие частички вольфрама, которыми затем бомбардируют клетки. Бомбардировка осуществляется с помощью биолистической пушки за счет перепада давления. Часть клеток гибнет, а выжившие клетки трансформируются, затем их культивируют и используют для регенерации растений.

Решение проблемы создания новых форм растений подразумевает в первую очередь повышение качества синтезируемых растением продуктов, которые определяют его питательную и техническую ценность. В основном это касается запасных белков.

Характеристики

Тип файла
Документ
Размер
20,24 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6624
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее