86278 (612707), страница 3

Файл №612707 86278 (Вивчення поняття відносин залежності) 3 страница86278 (612707) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

(iii) (ii) Доведемо від противного. Нехай . Можна вважати, що . Тоді по (iii) незалежно. Одержали протиріччя з максимальністю

(iii) (i) Потрібно довести рівність для довільного .

Візьмемо й покажемо, що Тому що , те Нехай існує , тоді незалежно й існує Z і Z . Розширюючи в можна припустити, що По (ii) , тобто . Тому по (iii) Z . бачимо, що . Виходить, . Одержуємо протиріччя з тим, що Отже, , те мережа .

Тепер досить показати, що . Нехай , тоді залежно, розширюючи в можна припустити, що , крім того , тоді по (ii) . незалежно, тому . По (iii) Z . бачимо, що . Виходить, , одержали протиріччя з максимальністю . Отже, , зворотне включення очевидно, тому .

(iv) (ii) У силу теорем 1 і 3 і доведена еквівалентності

(i) (ii).

Далі будемо розглядати транзитивний простір залежності Z .

Визначення 12.

Потужність максимальної незалежної підмножини даної множини називається рангом цієї множини: .

Будемо розглядати кінцеві підмножини .

Мають місце наступні властивості.

Властивість 1о: Z .

Доказ: Z .

Властивість 2о: Z .

Доказ: Z, візьмемо , тоді по властивості 1о і . Зворотне твердження потрібне з визначення 13.

Властивості 3о – 7о сформульовані для .

Властивість 3о: .

Доказ: Ясно, що , і тому що число елементів будь-якої підмножини не більше числа елементів самої множини, то дана властивість виконується.

Властивість 4о: .

Доказ: потрібне з того, що незалежна підмножина в можна продовжити до максимальної незалежної підмножини в ;

Властивість 5о: .

Доказ:

Нехай Тоді И потім . Маємо .

Властивість 6о: .

Доказ: випливає із властивості 40;

Властивість 7о: .

Доказ:

.

4. Зв'язок транзитивних відносин залежності з операторами замикання

Транзитивне відношення залежності також може бути описане за допомогою алгебраїчного оператора замикання деякого типу. Для початку сформулюємо визначення використовуваних понять.

Визначення 13.

Множина E підмножин множини A називається системою замикань, якщо E і система E замкнута щодо перетинань, тобто ∩D E для кожної непустої підмножини D E

Визначення 14.

Оператором замикання на множині A називається відображення J множини B (A) у себе, що володіє наступними властивостями:

J. 1. Якщо , то J(X) J(Y);

J. 2. X J(X);

J. 3. JJ(X) = J(X), для всіх X, Y B (A).

Визначення 15.

Оператор замикання J на множині A називається алгебраїчним, якщо для будь-яких і тягне для деякої кінцевої підмножини множини .

Визначення 16.

Система замикань називається алгебраїчної, якщо тільки відповідний оператор замикання є алгебраїчним

Слід зазначити теорему про взаємозв'язок між системами замикань і операторами замикань.

Теорема 5.

Кожна система замикань E на множині визначає оператор замикання J на за правилом J(X) = ∩{Y E | Y X}. Обернено, кожний оператор замикання J на визначає систему замикань E J .

Наступна теорема показує зв'язок транзитивного відношення залежності й алгебраїчного оператора замикання.

Теорема 6.

Для будь-якого транзитивного відношення залежності Z відображення є алгебраїчним оператором замикання на А із властивістю заміщення.

Обернено, будь-який алгебраїчний оператор замикання на А із властивістю заміщення виходить таким способом з деякого транзитивного відношення залежності Z на А.

Доказ:

Будемо називати підмножину Т множини A замкнутим, якщо .

Покажемо спочатку, що замкнуті підмножини утворять систему замикань. Якщо , де - сімейство замкнутих множин, то нехай - така незалежна підмножина множини B, що залежно; оскільки для всіх , маємо , звідки , тобто В замкнуто.

Нехай , те по визначенню 3 Z кінцеве, таке що залежно. У першому випадку , а в другому . І оскільки замкнуто в силу транзитивності, одержуємо алгебраїчний оператор замикання.

Цим доведено, що замкнуті підмножини утворять алгебраїчну систему замикань.

Виконання властивості заміщення потрібне з відповідної властивості просторів залежності.

Обернено, нехай - алгебраїчний оператор замикання із властивістю заміщення.

Будемо вважати залежним, якщо для деякого , і незалежним у противному випадку.

Тому що оператор алгебраїчний, то звідси випливає, що всяка залежна множина має кінцеву залежну підмножину, і оскільки очевидно, що всяка множина, що містить залежну підмножину, саме залежно, у такий спосіб одержуємо відношення залежності. Умова транзитивності виконується по визначенню, і це показує, що ми маємо транзитивне відношення залежності.

Тепер для будь-яких , маємо тоді й тільки тоді, коли для деякої кінцевої підмножини множини . Вибираючи мінімальним, можемо припускати, що незалежно. Звідси випливає, що й, отже, .

Обернено, якщо , те знову для деякої кінцевої незалежної підмножини множини . Це означає, що залежно, тобто для якогось .

У силу властивості заміщення одержуємо, що й , тому .

Зауваження. Існують алгебраїчні оператори замикання, що не володіють властивістю заміщення. Для приклада візьмемо нескінченну циклічну напівгрупу .

Нехай і . Тоді , , але .

5. Матроїди

Поняття матроїда тісно пов'язане з поняттям відносини залежності, тому ця тема розглядається в даній кваліфікаційній роботі. Однак з іншої сторони воно є теоретичною основою для вивчення й аналізу «жадібних» алгоритмів.

Визначення 17.

Матроїдом називається кінцева множина й сімейство його підмножин , таке що виконується три аксіоми:

М1: ;

М2: ;

М3:

Визначення 18.

Елементи множини називаються незалежними, а інші підмножини - залежними множинами.

Відповідно до уведеного раніше аксіомами простору залежності бачимо, що матроїди - це в точності кінцеві транзитивне простори залежності.

Розглянемо наступні приклади матроїдів:

Приклад 1.

Сімейство всіх лінійно незалежних підмножин будь-якої кінцевої множини векторів довільного непустого векторного простору є матроїдом.

Дійсно, по визначенню можна вважати, що порожня множина лінійно незалежно. Усяка підмножина лінійно незалежної підмножини векторів лінійно незалежно. Нехай і - лінійно незалежні множини. Якби всі вектори із множини виражалися у вигляді лінійної комбінації векторів із множини , то множина була б лінійно залежним. Тому, серед векторів множини є принаймні один вектор , що не входить у множину й не виражається у вигляді лінійної комбінації векторів із множини . Додавання вектора до множини утворить лінійно незалежна множина.

Приклад 2.

Вільні матроїди. Якщо - довільна кінцева множина, то - матроїд. Такий матроїд називається вільним. У вільному матроїді кожна множина незалежно, А є базисом і .

Приклад 3.

Матроїд трансверсалей. Нехай - деяка кінцева множина, і - деяке сімейство підмножин цієї множини. Підмножина називається часткової трансверсалью сімейства , якщо містить не більш ніж по одному елементі кожної підмножини із сімейства . Часткові трансверсали над утворять матроїд на А.

Перейдемо до розгляду жадібного алгоритму. Для початку потрібно сформулювати задачу, що будемо вирішувати з його використанням.

Нехай є кінцева множина , , вагова функція й сімейство .

Розглянемо наступну задачу: знайти , де . Інакше кажучи, необхідно вибрати в зазначеному сімействі підмножина найбільшої ваги.

Не обмежуючи спільності, можна вважати, що

Розглянемо такий алгоритм, що вихідними даними має множину , сімейство його підмножин і вагарню функцію , причому множина впорядкована в порядку убування ваг елементів. Після виконання цього алгоритму ми одержимо підмножину .

Споконвічно шукана множина порожньо, далі переглядаємо по черзі всі елементи із множини й перевіряємо залежність множини , якщо - незалежно, те елемент додаємо в множину , якщо ж - залежне, те переходимо до елемента , поки всі елементи із множини не будуть перевірені.

Алгоритм такого типу називається «жадібним». Зовсім очевидно, що по побудові остаточна множина , тобто незалежно. Також очевидно, що жадібний алгоритм є надзвичайно ефективним: кількість кроків становить , тобто жадібний алгоритм є лінійним. (Не вважаючи витрат на сортування множини й перевірку незалежності .)

Приклад 4.

Нехай дана матриця . Розглянемо наступні задачі.

Задача 1. Вибрати по одному елементі з кожного стовпця, так щоб їхня сума була максимальна.

Тут вагова функція ставить у відповідність елементу матриці його значення. Наприклад, .

Множина в такий спосіб:

.

Сімейство незалежних підмножин будуть утворювати такі множини, у яких всі елементи з різних стовпців і порожня множина.

Наш алгоритм буде працювати в такий спосіб:

0 крок: ;

1 крок: перевіряємо для елемента , ;

Характеристики

Тип файла
Документ
Размер
6,66 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее