86193 (612680), страница 3

Файл №612680 86193 (Рішення ірраціональних рівнянь) 3 страница86193 (612680) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Таким чином, рівняння (3) є наслідком рівняння (1). Складаючи ці два рівняння й множачи отримане рівняння на а, одержимо рівняння (4), що також є наслідком рівняння (1). Звівши рівняння (4) у квадрат і вирішивши отримане рівняння, потрібне виконати перевірку знайдених корінь, тобто перевірити, чи є його коріння коріннями рівняння (1).

Зауваження. Відзначимо, що точно також доводиться, що рівняння (4) є наслідок рівняння .

Приклад 1. Вирішити рівняння (5).

Рішення. Різниця підкореневих виражень і є

. ,

те рівняння (6) є наслідком вихідного рівняння. Тоді, складаючи рівняння (5) і (6), одержимо рівняння (7), що також є наслідком вихідного рівняння (5). Зведемо обидві частини рівняння (6) у квадрат, одержимо рівняння (8), що також є наслідком вихідного рівняння. Вирішуючи рівняння (8), одержуємо, що ,

Перевіркою переконуємося, що обоє цих числа є коріннями вихідного рівняння.

Відповідь: .

Зауваження. Рівняння виду можна вирішувати множенням обох частин рівняння на деяке вираження, що не приймає значення нуль (на сполучене лівій частині рівняння тобто

Приклад 2. Вирішити рівняння (8).

Рішення. , те помножимо обидві частини рівняння на вираження , що є сполученим лівої частини рівняння (8). . Після приведення подібних доданків одержуємо рівняння (9), рівносильне вихідному, тому що рівняння дійсних корінь не має. Складаючи рівняння (8) і (9) одержуємо, що . Тоді

Відповідь: .

Зауваження. Також рівняння виду можна вирішувати за допомогою ОПЗ рівняння й рівносильних переходів від одних рівнянь до інших.

Приклад 3. Вирішити рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ: Отже,

На ОПЗ обидві частини рівняння позитивні, тому після введення у квадрат одержимо рівняння: , рівносильне для рівнянню

Іноді рішення рівняння можна знайти, вирішуючи його на різних числових проміжках.

Для кожного маємо , а . Отже, серед немає рішень рівняння .

Для маємо . Отже, для . . Тоді . Так як , те є коренем рівняння , рівносильному рівнянню для цих х.

Відповідь: .

Приклад 4. Вирішити рівняння

Рішення. Перетворимо вихідне рівняння.

Зведемо обидві частини даного рівняння у квадрат.

Перевірка показує, що 5 є коренем вихідного рівняння.

Зауваження. Іноді значно простіше можна вирішувати рівняння виду , якщо скористатися властивостями монотонності функцій, а саме тим, що сума двох зростаючих функцій є зростаючою функцією, і всяка монотонна функція кожне своє значення приймає, лише при одному значенні аргументу. Дійсно, функції й - зростаючі. Отже, їхня сума - зростаюча функція.

Виходить, вихідне рівняння, якщо має корінь, те тільки один. У цьому випадку, з огляду на, що , підбором легко знайти, що 5 є коренем вихідного рівняння.

Приклад 5. Вирішити рівняння

Рішення. Якщо обидві частини вихідного рівняння піднести до квадрата, то вийде досить складне рівняння. Надійдемо по-іншому: перетворимо рівняння до виду:

Вирішимо нерівність системи.

Рішенням системи є множина:

.

Вирішимо рівняння системи.

Переконуємося, що 2 належить множині рішень нерівності (мал.1).

Зауваження. Якщо вирішувати дане рівняння введенням обох частин у квадрат, то необхідно виконати перевірку. 2 - ціле число, тому при виконанні перевірки труднощів не виникають. А що стосується значення , то підстановка його у вихідне рівняння приводить до досить складних обчислень. Однак такої підстановки можна уникнути, якщо помітити, що при цьому значенні права частина рівняння приймає негативне значення: . Тоді як ліва частина рівняння негативної бути не може. Таким чином, не є коренем рівняння - наслідку даного рівняння. Тим більше, це значення не може бути коренем вихідного рівняння. Отже, корінь рівняння - число 2.

Приклад 6. Вирішити рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ:

Отже,

Для будь-яких значень із ОПЗ, що задовольняють умові , тобто для із проміжку ліва частина рівняння негативна, а перша – ненегативна, виходить, жодне із цих рішенням рівняння бути не може.

Нехай . Для таких обидві частини рівняння ненегативні, і тому воно рівносильне на цій множині рівнянню:

.

Уведемо нову змінну. . Одержуємо, що . Тоді - не задовольняє умові , .

Виконаємо зворотну заміну.

; ;

.

Тоді - не задовольняє умові ,

Відповідь: .

Приклад 7. Вирішити рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ:

Отже, що

Легко бачити, що , тому що .

Розділимо обидві частини рівняння на . Одержуємо, що

Перетворимо . Уведемо нову змінну. Нехай , а . Тоді рівняння прийме вид: ; ; : . Тоді - не задовольняє умові , . Виконаємо зворотну заміну.

Відповідь: .

Приклад 8. Вирішити рівняння

Рішення. Перетворимо вихідне рівняння.

Зведемо обидві частини отриманого рівняння у квадрат.

Тоді

Отже, перевірка показує, що -1,2 - не є коренем вихідного рівняння, а 3 - є.

Зауваження. Дане рівняння можна вирішувати й за допомогою рівносильних переходів, але тоді його рішенні буде набагато складніше, ніж наведене вище.

Відповідь: {3}.

Приклад 9. Вирішити рівняння

Рішення. Помітимо, що всі квадратні тричлени позитивні відносно . Перепишемо рівняння у вигляді:

Позначимо для стислості підкореневі вираження через відповідно. Помножимо й розділимо ліву й праву частину рівняння на сполучені співмножники. Одержуємо, що

Повернемося до рівняння.

Друге рівняння сукупності рішень не має, оскільки обидва знаменники позитивні. Отже,

Зауваження. Також рішення даного рівняння можна знайти, досліджуючи його на різних числових проміжках.

Спочатку виділимо й відповідно в кожному з підкореневих виражень у правій частині рівняння.

Отже, вихідне рівняння має вигляд:

Позначимо для стислості підкореневі вираження через , , і відповідно. Так як вираження звертається в нуль при , те розглянемо рішення даного рівняння при , і .

Якщо , то > , > + > + .

Отже, при вихідне рівняння не має корінь.

Якщо , то < , < + < + .

Отже, при вихідне рівняння не має корінь.

Якщо , то = , = + = + .

Отже, -1 є єдиним коренем вихідного рівняння.

Відповідь:{-1}.

Зауваження. Отже, при рішенні рівнянь із радикалами потрібне вміти користуватися кожним із цих методів і вибирати в кожному випадку оптимальний.

3. Не стандартні методи рішення ірраціональних рівнянь

Існують ірраціональні рівняння, які вважаються для школярів звичайних освітніх шкіл задачами підвищених труднощів. Для рішення таких рівнянь краще застосовувати не традиційні методи, а прийоми, які не зовсім звичні для учнів. У цій главі приводяться рішення рівнянь заснованих на графічних міркувань, властивостях функції (таких, як монотонність, обмеженість, парність), застосуванні похідній і т.д.

3.1 Застосування основних властивостей функції

3.1.1 Використання області визначення рівняння

Іноді знання області визначення рівняння дозволяє довести, що рівняння не має рішень, а іноді дозволяє знайти рішення рівняння безпосередньою підстановкою чисел з її.

Приклад 1. Вирішити рівняння .

Рішення. Знайдемо область визначення рівняння.

ОПЗ: .

Отже, дана система рішень не має.

Так як система рішень не має, то й дане рівняння не має корінь.

Відповідь: .

Приклад 2. Вирішити рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ: .

Отже, або .

Таким чином, рішення даного рівняння можуть перебувати серед знайдених двох чисел.

Перевіркою переконуємося, що тільки 2 є коренем вихідного рівняння.

Відповідь: {2}.

3.1.2 Використання області значень рівнянь

Приклад 1. Вирішити рівняння

Рішення.. , отже, , але (права частина рівняння негативна, а ліва позитивна), значить дане рівняння не має рішень.

Відповідь:

Приклад 2. Вирішити рівняння .

Рішення. , те

; ; ; ; ; ; .

Отже, ліва частина рівняння приймає ненегативне значення тільки при . А це значить, що його коренем може бути тільки значення 5, а може трапитися, що рівняння взагалі не буде мати корінь. Для рішення цього питання виконаємо перевірку.

Перевірка показує, що 5 є коренем вихідного рівняння.

Відповідь: {5}.

3.1.3 Використання монотонності функції

Рішення рівнянь і нерівностей з використанням властивостей монотонності ґрунтується на наступних твердженнях.

1. Нехай f(x) - безперервна й строго монотонна функція на проміжку Q, тоді рівняння f(x)=c, де c - дана константа може мати не більше одного рішення на проміжку Q.

2. Нехай f(x) і g(x) - безперервні на проміжку Q функції, f(x) - строго зростає, а g(x)- строго убуває на цьому проміжку, тоді рівняння f(x)= g(x) може мати не більше одного рішення на проміжку Q.

Відзначимо, що в кожному з випадків проміжки Q можуть мати один з видів:

Приклад 1. Вирішимо рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ: .

Отже, .

На ОПЗ функції й безперервні й строго убувають, отже, безперервна й убуває функція . Тому кожне своє значення функція h(x) приймає тільки в одній крапці. Так як h(2)=2 , те 2 є єдиним коренем вихідного рівняння.

Відповідь: {2}.

3.1.4 Використання обмеженості функції

Якщо при рішенні рівняння вдається показати, що для всіх з деякої множини М справедливі нерівності й , то на множині М рівняння рівносильне системі рівнянь: .

Приклад 1. Вирішити рівняння .

Рішення. Функції, що коштують у різних частинах рівняння, визначені на . Для кожного . Отже, дане рівняння рівносильне системі рівнянь

.

Вирішимо друге рівняння системи:

; ;

Тоді

Перевірка показує, що 0 є коренем даного рівняння, а - 1-не є.

Відповідь:{0}.

Приклад 2. Вирішити рівняння

Рішення. Оцінимо підкореневі вираження.

Отже, ,

Так як перший доданок лівої частини вихідного рівняння обмежено знизу одиницею, а другий доданок-3, те їхня сума обмежена знизу 4. Тоді ліва частина рівняння стає рівної правої частини рівняння при .

Відповідь:{2}.

3.2 Застосування похідної

У вищенаведених рівняннях були розглянуті застосування деяких властивостей функції, що входять у рівняння. Наприклад, властивості монотонності, обмеженості, існування найбільшого й найменшого значень і т.д. Іноді питання про монотонність, про обмеженість і, особливо, про знаходження найбільшого й найменшого значень функції елементарними методами вимагає трудомістких і тонких досліджень, однак він істотно спрощується при застосуванні похідної. (Наприклад, не завжди можна догадатися, як і яка нерівність застосувати з «класичних»).

Розглянемо застосування похідної при рішенні рівнянь.

3.2.1 Використання монотонності функції

Надалі ми будемо користуватися наступними твердженнями:

1) якщо функція f(x) має позитивну похідну на проміжку М, те ця функція зростає на цьому проміжку;

2) якщо функція безперервна на проміжку й має усередині проміжку позитивну (негативну) похідну, те ця функції зростає ( убуває) на проміжку;

3) якщо функція має на інтервалі (а;b) тотожно рівну нулю похідну, те ця функція є постійна на цьому інтервалі.

Приклад 1. Вирішити рівняння

Рішення. Розглянемо функцію

.

На цьому проміжку безперервна, усередині його має похідну:

Ця похідна позитивна усередині проміжку . Тому функція зростає на проміжку М. Отже, вона приймає кожне своє значення в одній крапці. А це означає, що дане рівняння має не більше одного кореня. Легко бачити, що -1 є коренем даного рівняння й по сказаному вище інших корінь не має.

Відповідь:

3.2.2 Використання найбільшого й найменшого значень функції

Справедливі наступні твердження:

найбільше (найменше) значення безперервної функції, прийняте на інтервалі може досягатися в тих крапках інтервалу , у яких її похідна дорівнює нулю або не існує (кожна така крапка називається критичною крапкою);

щоб знайти найбільше й найменше значення безперервної на відрізку функції, що має на інтервалі (а;b) кінцеве число критичних крапок, досить обчислити значення функції у всіх критичних крапках, що належать інтервалу (а;b), а також у кінцях відрізка й з отриманих чисел вибрати найбільше й найменше; якщо в критичній крапці функція безперервна, а її похідна, проходячи через цю крапку, міняє знак з «мінуса» на «плюс», то крапка - крапка мінімуму, а якщо її похідна міняє знак з «плюса» на «мінус», те - крапка максимуму.

Приклад 1. Вирішити рівняння .

Рішення. Знайдемо ОПЗ змінної x.

ОПЗ: .

Розглянемо безперервну функцію на відрізку [2;4], де D(f)=[2;4].

Функція f(x) на інтервалі (2;4) має похідну: , звертаються в нуль тільки при х=3.

Так як функція f(x)безперервна на відрізку [2;4], те її найбільше й найменше значення перебувають серед чисел f(3);f(2);f(4). Так як f(3)=2;f(2)=f(4)= , , те найбільше значення f(x) є f(3)=2.

Отже, дане рівняння має єдиний корінь: 3.

Відповідь:{3}.

4. Змішані ірраціональні рівняння й методи їхнього рішення

4.1 Ірраціональні рівняння, що містять подвійну ірраціональність

Приклад 1. Вирішити рівняння

Рішення. Зведемо обидві частини рівняння в куб.

Зведемо обидві частини отриманого рівняння у квадрат.

Уведемо нову змінну. Нехай , тоді . Одержуємо, що . Тоді .

Виконаємо зворотну заміну. Або .

Тоді або

Перевірка показує, що не є коренем даного рівняння, а 1- є.

Відповідь: {1}.

Приклад 2. Вирішити рівняння

Рішення.

Уведемо нову змінну. Нехай . Тоді

Тоді система прийме наступний вид:

Відповідь:

Приклад 3. Вирішити рівняння

Рішення. Уведемо нову змінну. Нехай . Тоді . Одержуємо, що

.

Так як. , те дане рівняння рівносильне наступний:

Одержуємо, що . З огляду на, що , те рішення: . Отже, .

Виконаємо зворотну заміну. . Тоді

Відповідь: [-4;0].

Приклад 4. Вирішити рівняння

Рішення. Перетворимо підкореневі вираження.

Повернемося до вихідного рівняння.

Останнє рівняння вирішимо методом інтервалів.

Нехай . Одержуємо, що

. , те на даному проміжку рівняння не має корінь.

Нехай . Одержуємо, що Рівність вірно. Знайдемо всі значення з даного проміжку. . Отже,

Нехай . Одержуємо, що . Так як , те на даному проміжку рівняння не має корінь.

Зауваження. Дане рівняння можна вирішувати, виконавши заміну змінної . Після рішення вихідного рівняння щодо змінної , виконавши зворотну заміну, знайдемо корінь рівняння.

Відповідь: [0;3].

Зауваження. Вираження виду звичайно називають подвійним радикалом або складним радикалом.

Якщо підкореневе вираження являє собою повний квадрат, то можна в подвійному радикалі звільнитися від зовнішнього радикала, скориставшись рівністю .

Перетворення подвійних радикалів.

Вправа 1. Звільнитися від зовнішнього радикала у вираженні .

Рішення. Доданок можна розглядати як подвоєний добуток чисел і або чисел і . Число 7 повинне бути дорівнює сумі квадратів цих чисел. Підбором знаходимо, що ця умова виконується для чисел і , тобто .

Одержуємо, що

Відповідь: .

4.2 Ірраціональні показові рівняння

Приклад 1. Вирішити рівняння .

Рішення. ; - рішень немає.

Відповідь:

Приклад 2. Вирішити рівняння

Рішення.

- Рішень ні, тому що

Відповідь:

Приклад 3. Вирішити рівняння

;

Відповідь: .

Примі 4. Вирішити рівняння

Рішення.

;

Уведемо нову змінну. Нехай . Одержуємо, що . Тоді

Виконаємо зворотну заміну. Або

;

- рішень немає.

; .

Відповідь:{3}.

Приклад 5. Вирішити рівняння

Рішення. Множина М – загальна частина (перетинання) областей існування функцій - є всі

На множині М функції й позитивні. Тому, логарифмуючи обидві частини рівняння, одержимо рівняння, рівносильне вихідному на М.

Вирішимо рівняння сукупності.

. Уведемо нову змінну. Нехай . Одержуємо, що . Тоді . Виконаємо зворотну заміну. або . Тоді або .

Одержуємо, що вихідне рівняння рівносильне системі:

Відповідь: .

Зауваження. У задачах підвищеної складності зустрічаються рівняння виду , де - деякі позитивні числа. Такі рівняння не є ірраціональними рівняннями, тому що не містять змінної під знаком радикала, але всі, же розберемо їхнє рішення в даному пункті.

Приклад 6. Вирішити рівняння

Рішення. Перетворимо вираження

Тоді вихідне рівняння прийме вид:

Зауваження. Можна помітити, що , отже, і - взаємно обернені числа. Тоді . Уведемо нову змінну. Нехай , а Одержуємо, що вихідне рівняння рівносильне наступний . Тоді

Виконаємо зворотну заміну.

або

; ;

Тоді .

;

Тоді

Відповідь :{-2;2}.

4.3 Ірраціональні логарифмічні рівняння

Приклад 1. Вирішити рівняння

Рішення. ;

З огляду на, що , дане рівняння рівносильне системі:

Відповідь:{32,75}.

Приклад 2. Вирішити рівняння

Рішення. . Перетворимо праву частину рівняння.

Повернемося до вихідного рівняння.

;

Уведемо нову змінну. Нехай . Одержуємо, що

.

Вирішимо рівняння системи.

; .

Тоді

Повернемося до системи: Отже,

Виконаємо зворотну заміну:

Перевірка показує, що 1 є коренем вихідного рівняння.

Відповідь: {1}.

Приклад 3. вирішити рівняння

Рішення. Знайдемо ОПЗ змінної х.

ОПЗ:

.

На ОПЗ вихідне рівняння рівносильне рівнянню

; ;

Уведемо нову змінну. Нехай або

;

;

Відповідь: {3;81}.

Висновок

Дана курсова робота допомогла мені навчитися вирішувати ірраціональні рівняння наступних типів: стандартного, нестандартного, показового, логарифмічні, підвищеного рівня. Застосовувати основні властивості функції, область визначення, область значення функції. Використовувати найбільше й найменше значення функції. Застосування похідної. Я вважаю, що цілі які поставлені перед виконанням курсової роботи виконані.

Література

1. Харкова О.В. Ірраціональні рівняння. – К., 2004

2. Колмогоров О.М. Алгебра й початок аналізу. – К., 2003

3. Куланін Е.Д., Норін В.П. 3000 конкурсних задач по математиці. – К., 2000

4. Гусєв В.А., Мордкович А.Д. Довідкові матеріали по математиці. – К., 2003

5. Сканаві М.М. Збірник задач по математиці. – К., 2006

Характеристики

Тип файла
Документ
Размер
8,01 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее