86089 (612639), страница 3
Текст из файла (страница 3)
Перейдемо тепер до вивчення кілець головних ідеалів.
Означення. Кільцем головних ідеалів називається область цілісності з одиницею, в якій кожен ідеал є головний.
Найпростішим прикладом кілець головних ідеалів є кільце цілих чисел Z: кільце Z, як відомо, є область цілісності з 1 і, за теоремою, кожен його ідеал головний.
Кожне поле Р є кільце головних ідеалів. Справді, поле Р є областю цілісності з одиницею; якщо U є ненульовий ідеал поля Р, то разом з будь-яким своїм елементом а ≠ 0 він містить і елемент аa-1 = 1 і, отже, U = (1). Кільцем головних ідеалів є також кільце многочленів від змінної х з коефіцієнтами з поля Р.
Звичайно, не кожна область цілісності з одиницею є кільцем головних ідеалів. Нижче ми наведемо приклади таких областей цілісності. А тепер займемося вивченням властивостей кілець головних ідеалів. Всюди далі вважатимемо, що R – кільце головних ідеалів.
Теорема 1. Будь-які два елементи а і b кільця головних ідеалів R мають найбільший спільний дільник d, причому d= rа + sb, де r і s – деякі елементи кільця R.
Доведення.
Якщо один з елементів а і b дорівнює нулю, то справедливість теореми очевидна. Нехай а і b – будь-які відмінні від нуля елементи кільця R. Вони породжують ідеал (а, b), який складається з усіх елементів вигляду ха + уb, де х і у – будь-які елементи кільця R. Оскільки R – кільце головних ідеалів, то ідеал (а, b) є головний, тобто породжується деяким елементом dR: (а, b) = (d).
Тому
d = rа + sb (r, sR), (2)
а = gd, b = hd (g, hR). (3)
З рівностей (3) випливає, що d є спільний дільник елементів а і b;
з рівності ж (2) випливає, що d ділиться на будь-який спільний дільник елементів а і b. Отже, а = (а, b).
Доведено.
Спираючись на теорему 1, доведемо твердження, яке є критерієм взаємної простоти двох елементів кільця головних ідеалів.
Теорема 2. Елементи а і b кільця головних ідеалів R взаємно прості тоді і тільки тоді, коли в кільці R є такі елементи r і s, що rа +sb = 1.
Доведення.
Необхідність умови очевидна: якщо а і b – взаємно прості, тобто (а, b) = 1, то, за теоремою 1, в кільці R існують такі елементи r і s, що rа + sb = 1. Доведемо достатність умови. Припустимо, що в кільці R існують такі елементи r і s, що rа + sb = 1.
З цієї рівності випливає, що спільними дільниками елементів а і b можуть бути лише дільники одиниці і, отже, елементи а і b взаємно прості.
Доведено.
Теорема 3. Якщо елемент аR взаємно простий з кожним із елементів bR і сК, то він взаємно простий і з добутком цих елементів.
Доведення.
Оскільки а і b – взаємно прості, то, за теоремою 2, існують такі r, sR, що
rа + sb = 1.
Помноживши цю рівність на с, дістаємо: а (rc) + (bс) s = с. З цієї рівності випливає, що кожен спільний дільник елементів а і bс буде дільником і елемента с. Але за умовою теореми спільними дільниками елементів а і с є лише дільники одиниці, тому і спільними дільниками a і bс будуть лише дільники одиниці й, отже, а і bс взаємно прості.
Теорема 4. Якщо добуток елементів aR і bR ділиться на елемент с R, але а і с взаємно прості, то b ділиться на с.
Доведення.
Оскільки а і с – взаємно прості, то в кільці R існують такі r і s, що
rа + sc = 1.
Помноживши цю рівність на b, дістаємо:
(аb) r+с (bs) = b.
Обидва доданки лівої частини останньої рівності діляться на с, а тому і права її частина b ділиться на с.
Теорема 5. Якщо елемент а R ділиться на кожен з елементів bR і сR, які між собою взаємно прості, то а ділиться і на добуток bс.
Доведення.
Справді, за умовою теореми, а.: b, тобто а = bg. Оскільки а с, то bg с. Але b і с взаємно прості, тому, за теоремою 4, g: с, тобто g=cq.
Отже, а == (bс) q, тобто аbс.
Доведено.
Теорема 6. Якщо R – кільце головних ідеалів і р – простий елемент цього кільця, то фактор-кільце R/(р) є поле.
Доведення.
Одиничний елемент
= 1 + (р) кільця R/(р) відмінний від
= (р). Справді, якби
=
, то елемент 1 містився б в ідеалі (р) і тому р/1. Але елемент р не може бути дільником одиниці, оскільки він нерозкладний. Отже, в кільці R/(р) є принаймні один відмінний від нуля елемент.
Покажемо, що в кільці R/(р) здійсненна операція ділення, крім_ділення на нуль, тобто що для будь-яких елементів
= a + (р) ≠ 0 і
=
+ (р) кільця R/(р) рівняння
•
=
має в цьому кільці розв'язок. Справді, оскільки
≠
, то а не ділиться на р. Отже, за другою властивістю нерозкладних елементів, елементи а і р – взаємно прості, тобто (а, р) = 1. Тому, за теоремою 2, в кільці R існують такі елементи r і s, що аr + рs = 1. Звідси
аrb + рsb =b, аrb b (тоd p),
і, отже,
•
=
. Таким чином,
=
є розв'язком рівняння
=
.
Доведено.
Наслідок. Якщо добуток кількох елементів кільця головних ідеалів R ділиться на простий елемент рR, то принаймні один із співмножників ділиться на р.
Доведення.
Припустимо, що добуток a1 • а2 •… • as (aiR) ділиться на нерозкладний елемент р R, тобто що a1а2… аs (р).
Розглянемо елементи ai = аi+(р) (і =1, 2,…. s) і
= a1 a2 …as+(р). За означенням операції множення в кільці R/(р) =
Оскільки a1 a2 …as(р), то
=
і, отже,
=
Звідси, оскільки, за теоремою 6, R/(р) є поле, випливає, що для деякого m (1 < т < s)
=
. Але
=
означає, що am(p), тобто що am р.
Цим справедливість наслідку доведено.
Нашою метою буде тепер доведення твердження про можливість розкладу кожного елемента кільця головних ідеалів у добуток простих (нерозкладних) множників. Воно ґрунтується на такій лемі.
Лема. В кільці головних ідеалів R не існує нескінченної строго зростаючої послідовності ідеалів
U0 U1 U2 …UN …. (4)
Доведення.
Припустимо, що нескінченна строго зростаюча послідовність (4) існує. Позначимо символом b об'єднання всіх ідеалів послідовності (4). Множина b є ідеал кільця R. Справді, якщо aєb і bєb, то а є елемент деякого ідеалу Us, і b – деякого ідеалу Ul. Тому а і b є елементи ідеалу Um, де m – більший з індексів s і l. Отже, (а + b)є Umb, (а – b)єUmb і для будь-якого rєR arєUmb. Оскільки R – кільце головних ідеалів, то ідеал b головний. Нехай b= (b). Елемент b, як елемент об'єднання ідеалів послідовності (4), належить до деякого ідеалу Uk, а отже, і до кожного ідеалу Ui, при і ≥k
Тому (b) = Uk=Uk+1 = Uk+2 =…. А це суперечить нашому припущенню.
Доведено.
Теорема 7. В кільці головних ідеалів R кожен відмінний від нуля елемент, що не е дільником одиниці, розкладається в добуток простих множників.
Доведення.
Для кожного простого елемента кільця R теорема справедлива: для простого елемента добуток, про який говориться в теоремі, складається з одного множника. Припустимо, що в кільці R є відмінний від нуля елемент а, який не можна розкласти в добуток простих множників. Елемент а не простий і, отже, а = a1a2, де a1 і a2 – нетривіальні дільники елемента а.
Принаймні один з елементів a1 і a2 не можна розкласти в добуток простих множників, бо в противному разі і елемент а розкладався б у добуток простих множників. Не втрачаючи загальності міркувань, припустимо, що a1 не можна розкласти в добуток простих множників. Тоді a1=a11a12, де a11 та a12–нетривіальні дільники. Принаймні один з елементів a11 та a12 також не можна розкласти в добуток простих множників. Нехай цим елементом є a11. Для елемента a11 міркування повторимо і т.д. Цей процес послідовного розкладу, очевидно, не може обірватися. Таким чином, ми дістанемо нескінченну послідовність елементів
а, a1, a11, a111,…, (5)
у якій кожен наступний член є власним дільником попереднього.
Якщо ai+1 є власним дільником ai, то (ai+1)(ai), оскільки ai=ai+1r, де r – деякий елемент R. Тому головні ідеали, породжені елементами послідовності (5), утворюють нескінченну строго зростаючу послідовність ідеалів
(а)(a1)(a11)(a111)…,
а це суперечить доведеній вище лемі. Отже, наше припущення неправильне.
Доведено.
Покажемо тепер, що розклад, про який іде мова в теоремі 7, однозначний з точністю до порядку співмножників і до дільників одиниці.
Теорема 8. Якщо
a =p1p2…pr =q1q2…qs
є два розклади елемента а кільця головних ідеалів R в добуток простих множників, то r=s і, при відповідній нумерації співмножників, справджуються рівності qi=εi pi (і == 1, 2,…, r), де εi – деякий дільник одиниці кільця R.
Доведення.
Доводитимемо індукцією по r. При r = І справедливість твердження очевидна.
Справді, оскільки елемент а = р1 простий, то добуток q1q2…qs
може містити лише один множник q1=p1.
Припустимо, що теорема правильна для r – 1 (2 r), і доведемо, що в такому разі теорема справедлива й для r. Справді, оскільки
a =p1p2…pr і a = q1q2…qs то
p1p2…pr =q1q2…qs (6)
З рівності (6) випливає, що q1q2…qs ділиться на p1. Тому, за наслідком з теореми 6, принаймні один із співмножників q1,q2,…, qs ділиться на pi. Ми вважатимемо, що на p1 ділиться множник q1: цього завжди можна досягти зміною нумерації множників q1,q2,…, qs. Оскільки q1 – простий елемент і ділиться на простий елемент p1, то q1=1p1, де 1 – деякий дільник одиниці кільця R. Підставивши в рівність (6) 1p1 замість q1 і скоротивши обидві частини одержаної рівності на р1, дістанемо:
p2p3…pr =(1q2) q3…qs.
Але, за індуктивним припущенням, r– 1 == s– 1 і при відповідній нумерації множників q1,q2,…, qr:
q2=1q2=2p2, q3=3p3, …, qr=rpr,
де i – деякі дільники одиниці кільця R. Тому r = s і при відповідній нумерації множників q1, q2, …, qr:
q1=1p1, q2=1–12p2 =2p2, q3=3p3, …, qr=rpr
Доведено.
Зауважимо, що теореми 7 і 8 справедливі, зокрема, для кільця цілих чисел, яке є кільцем головних ідеалів.
Постає запитання: чи не можна теореми 7 і 8 поширити на клас областей цілісності більш широкий, ніж кільце головних ідеалів? Відповідь на це запитання в загальному випадку негативна. Є області цілісності, в яких не справджується теорема про розклад елементів області цілісності в добутки простих множників, а також області цілісності, в яких розклад елементів на прості множники хоч і можливий, але не однозначний. Наведемо приклади таких областей цілісності, не вивчаючи її докладно.
Нехай К – множина всіх дійсних чисел виду














