86089 (612639), страница 3

Файл №612639 86089 (Факторіальні кільця та їх застосування) 3 страница86089 (612639) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Перейдемо тепер до вивчення кілець головних ідеалів.

Означення. Кільцем головних ідеалів називається область цілісності з одиницею, в якій кожен ідеал є головний.

Найпростішим прикладом кілець головних ідеалів є кільце цілих чисел Z: кільце Z, як відомо, є область цілісності з 1 і, за теоремою, кожен його ідеал головний.

Кожне поле Р є кільце головних ідеалів. Справді, поле Р є областю цілісності з одиницею; якщо U є ненульовий ідеал поля Р, то разом з будь-яким своїм елементом а ≠ 0 він містить і елемент аa-1 = 1 і, отже, U = (1). Кільцем головних ідеалів є також кільце многочленів від змінної х з коефіцієнтами з поля Р.

Звичайно, не кожна область цілісності з одиницею є кільцем головних ідеалів. Нижче ми наведемо приклади таких областей цілісності. А тепер займемося вивченням властивостей кілець головних ідеалів. Всюди далі вважатимемо, що R – кільце головних ідеалів.

Теорема 1. Будь-які два елементи а і b кільця головних ідеалів R мають найбільший спільний дільник d, причому d= rа + sb, де r і s – деякі елементи кільця R.

Доведення.

Якщо один з елементів а і b дорівнює нулю, то справедливість теореми очевидна. Нехай а і b – будь-які відмінні від нуля елементи кільця R. Вони породжують ідеал (а, b), який складається з усіх елементів вигляду ха + уb, де х і у – будь-які елементи кільця R. Оскільки R – кільце головних ідеалів, то ідеал (а, b) є головний, тобто породжується деяким елементом dR: (а, b) = (d).

Тому

d = rа + sb (r, sR), (2)

а = gd, b = hd (g, hR). (3)

З рівностей (3) випливає, що d є спільний дільник елементів а і b;

з рівності ж (2) випливає, що d ділиться на будь-який спільний дільник елементів а і b. Отже, а = (а, b).

Доведено.

Спираючись на теорему 1, доведемо твердження, яке є критерієм взаємної простоти двох елементів кільця головних ідеалів.

Теорема 2. Елементи а і b кільця головних ідеалів R взаємно прості тоді і тільки тоді, коли в кільці R є такі елементи r і s, що rа +sb = 1.

Доведення.

Необхідність умови очевидна: якщо а і b – взаємно прості, тобто (а, b) = 1, то, за теоремою 1, в кільці R існують такі елементи r і s, що rа + sb = 1. Доведемо достатність умови. Припустимо, що в кільці R існують такі елементи r і s, що rа + sb = 1.

З цієї рівності випливає, що спільними дільниками елементів а і b можуть бути лише дільники одиниці і, отже, елементи а і b взаємно прості.

Доведено.

Теорема 3. Якщо елемент аR взаємно простий з кожним із елементів bR і сК, то він взаємно простий і з добутком цих елементів.

Доведення.

Оскільки а і b – взаємно прості, то, за теоремою 2, існують такі r, sR, що

rа + sb = 1.

Помноживши цю рівність на с, дістаємо: а (rc) + (bс) s = с. З цієї рівності випливає, що кожен спільний дільник елементів а і bс буде дільником і елемента с. Але за умовою теореми спільними дільниками елементів а і с є лише дільники одиниці, тому і спільними дільниками a і bс будуть лише дільники одиниці й, отже, а і bс взаємно прості.

Теорема 4. Якщо добуток елементів aR і bR ділиться на елемент с R, але а і с взаємно прості, то b ділиться на с.

Доведення.

Оскільки а і с – взаємно прості, то в кільці R існують такі r і s, що

rа + sc = 1.

Помноживши цю рівність на b, дістаємо:

(аb) r+с (bs) = b.

Обидва доданки лівої частини останньої рівності діляться на с, а тому і права її частина b ділиться на с.

Теорема 5. Якщо елемент а R ділиться на кожен з елементів bR і сR, які між собою взаємно прості, то а ділиться і на добуток bс.

Доведення.

Справді, за умовою теореми, а.: b, тобто а = bg. Оскільки а с, то bg с. Але b і с взаємно прості, тому, за теоремою 4, g: с, тобто g=cq.

Отже, а == (bс) q, тобто аbс.

Доведено.

Теорема 6. Якщо R – кільце головних ідеалів і р – простий елемент цього кільця, то фактор-кільце R/(р) є поле.

Доведення.

Одиничний елемент = 1 + (р) кільця R/(р) відмінний від = (р). Справді, якби = , то елемент 1 містився б в ідеалі (р) і тому р/1. Але елемент р не може бути дільником одиниці, оскільки він нерозкладний. Отже, в кільці R/(р) є принаймні один відмінний від нуля елемент.

Покажемо, що в кільці R/(р) здійсненна операція ділення, крім_ділення на нуль, тобто що для будь-яких елементів = a + (р) ≠ 0 і = + (р) кільця R/(р) рівняння = має в цьому кільці розв'язок. Справді, оскільки , то а не ділиться на р. Отже, за другою властивістю нерозкладних елементів, елементи а і р – взаємно прості, тобто (а, р) = 1. Тому, за теоремою 2, в кільці R існують такі елементи r і s, що аr + рs = 1. Звідси

аrb + рsb =b, аrb b (тоd p),

і, отже, = . Таким чином, = є розв'язком рівняння = .

Доведено.

Наслідок. Якщо добуток кількох елементів кільця головних ідеалів R ділиться на простий елемент рR, то принаймні один із співмножників ділиться на р.

Доведення.

Припустимо, що добуток a1 • а2 •… • as (aiR) ділиться на нерозкладний елемент р R, тобто що a1а2… аs (р).

Розглянемо елементи ai = аi+(р) (і =1, 2,…. s) і = a1 a2 …as+(р). За означенням операції множення в кільці R/(р) = Оскільки a1 a2 …as(р), то = і, отже, = Звідси, оскільки, за теоремою 6, R/(р) є поле, випливає, що для деякого m (1 < т < s) = . Але = означає, що am(p), тобто що am р.

Цим справедливість наслідку доведено.

Нашою метою буде тепер доведення твердження про можливість розкладу кожного елемента кільця головних ідеалів у добуток простих (нерозкладних) множників. Воно ґрунтується на такій лемі.

Лема. В кільці головних ідеалів R не існує нескінченної строго зростаючої послідовності ідеалів

U0 U1 U2 …UN …. (4)

Доведення.

Припустимо, що нескінченна строго зростаюча послідовність (4) існує. Позначимо символом b об'єднання всіх ідеалів послідовності (4). Множина b є ідеал кільця R. Справді, якщо aєb і bєb, то а є елемент деякого ідеалу Us, і b – деякого ідеалу Ul. Тому а і b є елементи ідеалу Um, де m – більший з індексів s і l. Отже, (а + b)є Umb, (а – b)єUmb і для будь-якого rєR arєUmb. Оскільки R – кільце головних ідеалів, то ідеал b головний. Нехай b= (b). Елемент b, як елемент об'єднання ідеалів послідовності (4), належить до деякого ідеалу Uk, а отже, і до кожного ідеалу Ui, при і ≥k

Тому (b) = Uk=Uk+1 = Uk+2 =…. А це суперечить нашому припущенню.

Доведено.

Теорема 7. В кільці головних ідеалів R кожен відмінний від нуля елемент, що не е дільником одиниці, розкладається в добуток простих множників.

Доведення.

Для кожного простого елемента кільця R теорема справедлива: для простого елемента добуток, про який говориться в теоремі, складається з одного множника. Припустимо, що в кільці R є відмінний від нуля елемент а, який не можна розкласти в добуток простих множників. Елемент а не простий і, отже, а = a1a2, де a1 і a2 – нетривіальні дільники елемента а.

Принаймні один з елементів a1 і a2 не можна розкласти в добуток простих множників, бо в противному разі і елемент а розкладався б у добуток простих множників. Не втрачаючи загальності міркувань, припустимо, що a1 не можна розкласти в добуток простих множників. Тоді a1=a11a12, де a11 та a12–нетривіальні дільники. Принаймні один з елементів a11 та a12 також не можна розкласти в добуток простих множників. Нехай цим елементом є a11. Для елемента a11 міркування повторимо і т.д. Цей процес послідовного розкладу, очевидно, не може обірватися. Таким чином, ми дістанемо нескінченну послідовність елементів

а, a1, a11, a111,…, (5)

у якій кожен наступний член є власним дільником попереднього.

Якщо ai+1 є власним дільником ai, то (ai+1)(ai), оскільки ai=ai+1r, де r – деякий елемент R. Тому головні ідеали, породжені елементами послідовності (5), утворюють нескінченну строго зростаючу послідовність ідеалів

(а)(a1)(a11)(a111)…,

а це суперечить доведеній вище лемі. Отже, наше припущення неправильне.

Доведено.

Покажемо тепер, що розклад, про який іде мова в теоремі 7, однозначний з точністю до порядку співмножників і до дільників одиниці.

Теорема 8. Якщо

a =p1p2…pr =q1q2…qs

є два розклади елемента а кільця головних ідеалів R в добуток простих множників, то r=s і, при відповідній нумерації співмножників, справджуються рівності qii pi (і == 1, 2,…, r), де εi – деякий дільник одиниці кільця R.

Доведення.

Доводитимемо індукцією по r. При r = І справедливість твердження очевидна.

Справді, оскільки елемент а = р1 простий, то добуток q1q2…qs

може містити лише один множник q1=p1.

Припустимо, що теорема правильна для r – 1 (2 r), і доведемо, що в такому разі теорема справедлива й для r. Справді, оскільки

a =p1p2…pr і a = q1q2…qs то

p1p2…pr =q1q2…qs (6)

З рівності (6) випливає, що q1q2…qs ділиться на p1. Тому, за наслідком з теореми 6, принаймні один із співмножників q1,q2,…, qs ділиться на pi. Ми вважатимемо, що на p1 ділиться множник q1: цього завжди можна досягти зміною нумерації множників q1,q2,…, qs. Оскільки q1 – простий елемент і ділиться на простий елемент p1, то q1=1p1, де 1 – деякий дільник одиниці кільця R. Підставивши в рівність (6) 1p1 замість q1 і скоротивши обидві частини одержаної рівності на р1, дістанемо:

p2p3…pr =(1q2) q3…qs.

Але, за індуктивним припущенням, r– 1 == s– 1 і при відповідній нумерації множників q1,q2,…, qr:

q2=1q2=2p2, q3=3p3, …, qr=rpr,

де i – деякі дільники одиниці кільця R. Тому r = s і при відповідній нумерації множників q1, q2, …, qr:

q1=1p1, q2=1–12p2 =2p2, q3=3p3, …, qr=rpr

Доведено.

Зауважимо, що теореми 7 і 8 справедливі, зокрема, для кільця цілих чисел, яке є кільцем головних ідеалів.

Постає запитання: чи не можна теореми 7 і 8 поширити на клас областей цілісності більш широкий, ніж кільце головних ідеалів? Відповідь на це запитання в загальному випадку негативна. Є області цілісності, в яких не справджується теорема про розклад елементів області цілісності в добутки простих множників, а також області цілісності, в яких розклад елементів на прості множники хоч і можливий, але не однозначний. Наведемо приклади таких областей цілісності, не вивчаючи її докладно.

Нехай К – множина всіх дійсних чисел виду

Характеристики

Тип файла
Документ
Размер
2,67 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее