86074 (612632), страница 4
Текст из файла (страница 4)
Точка А при аффинном преобразовании f -1 перейдет в точку А1, которая при косом сжатии g перейдет в точку А2 такую, что А1А2 ||l, . Далее точка А2 при аффинном преобразовании f перейдет в точку А3. Заметим, что прямая q1 = f(q) – инвариантная прямая всей трансформации (по теореме о неподвижных прямых). Из точек А1 и А2 проведем перпендикуляры на прямую q – А1В1 и А2В2, а из точек А и А3 – на прямую q1 – АВ и А3В3. Пусть АС и А3С3 – образы отрезков А1В1 и А2В2 при аффинном преобразовании f, значит, А1В1||А2В2 и
(т.к. при косом сжатии сохраняется параллельность прямых и отношение параллельных отрезков), тогда
(соответственные углы при пересечении параллельных прямых секущей), следовательно, прямоугольные треугольники АВС и А3В3С3 подобны, исходя из этого
. Мы получили, что при этой трансформации расстояние от точки А до прямой q1 изменилось в k раз:
. Причем из того, что А1А2 || l, следует, что AA3||f(l), потому что при косом сжатии сохраняется параллельность прямых, значит, точка А сместилась в направлении f(l). Следовательно, в силу произвольности точки А, искомая трансформация есть косое сжатие с осью f(q), направлением f(l) и коэффициентом k.
17. Решение задач с помощью трансформации преобразований
З
адача 1. Даны правильные одинаково ориентированные треугольники OAB, OCD, OEF. Доказать, что середины M, N, P соответственно отрезков BC, DE, AF являются вершинами правильного треугольника. [1]
Решение. Из четырехугольника BEDC находим:
(рис. 14). Помня, что результат поворота вектора не зависит от центра поворота, выполним поворот этих векторов на -60°:
,
,
. На основании (6) образом вектора
будет вектор
. Отсюда и следует, что треугольник MNP правильный.
Задача 2. Найти все перемещения плоскости, перестановочные с осевой симметрией Sl. [«Математика в школе», 1977, №1, задача 1802]
Решение. Из определения (1) следует, что . Если f = Sl, то на основании зависимости (3) имеем:
. Задача требует найти такие перемещения g, чтобы
. А для этого необходимо и достаточно того, чтобы Sl = Sg(l), откуда l = g(l). Перемещениями, отображающими прямую l на себя, являются: осевая симметрия с осью l, осевые симметрии, оси которых перпендикулярны прямой l, центральные симметрии с центрами на l, переносы параллельно l, переносные симметрии с осью l, тождественные перемещения и только эти преобразования.
Задача 3. Определить взаимное расположение центров A, B, C и зависимость между коэффициентами k, l, m гомотетий Ak, Bl, Cm, если
, (42)
где точки A, B, C различны и числа k, l, m не равны 1.
Решение. Из данной зависимости (42) получаем:
, или в принятых обозначениях (1)
. (43)
Рассмотрим отдельно два возможных случая: lk ≠ 1 и lk = 1. В первом случае , причем
. Отсюда получаем:
. Согласно формуле (24), результатом трансформации гомотетии гомотетией является снова гомотетия. Поэтому
, при этом по теореме о неподвижной точке Q = B1/l(P) и, следовательно,
. Тогда (43) принимает вид:
,
где Q = Cm(P), и, значит, . Так как
,
,
, то точки A, B, C коллинеарны. Как видим, при lk ≠ 1 для коэффициентов k, l, m дополнительных ограничений не возникает.
При lk = 1 по формуле (22) будет , тогда
и согласно (26)
. Поэтому (43) принимает вид
, или
при любом положении точки C. Отсюда lm = 1. Итак, при lk = lm = 1 центры A, B, C гомотетий произвольны.
Задача 4. Точки А, В, С лежат на прямой а, точки А1, В1, С1 – на прямой а1, параллельной прямой а (рис. 15). Доказать, что точки P = (AB1) ∩ (A1B), Q = (AC1) ∩ (A1C) и R = (BC1) ∩ (B1C) коллинеарны (теорема Паппа-Паскаля).
Р ешение. Рассмотрим гомотетии Pk, Rl, Qm, заданные указанными центрами и парами точек A → B1, B1 → C, C → A1 соответственно. Так как по условию a || a1, то Qm(A) = C1, Rl(C1) = B, Pk(B) = A1. Замечаем, что
, поскольку произведение коэффициентов гомотетий в каждой из этих композиций одно и то же и эти композиции имеют общую пару соответственных точек A → A1. На основании предыдущей задачи при lk ≠ 1 точки P, Q, R коллинеарны. Если же lk = lm = 1, то при a || a1 это возможно лишь тогда, когда (PR) || a и (PQ) || a, то есть и в этом случае точки P, Q, R коллинеарны.
Задача 5. Если фигура имеет ось симметрии и единственный центр симметрии, то центр симметрии принадлежит оси симметрии. Доказать.
Решение. Пусть l – ось симметрии и Q – единственный центр симметрии фигуры F, то есть Sl(F) = F и ZQ(F) = F. Тогда композиция отображает F на себя. Поскольку
, где A = = Sl(Q), то ZA(F) = F. Следовательно, точка A является центром симметрии фигуры F. Если бы
, то A ≠ Q, что противоречит условию единственности центра симметрии фигуры F. Значит,
.
Задача 6. Если композиция двух подобий перестановочна и одно из них имеет единственную неподвижную точку, то эта точка неподвижна и при втором подобии. Доказать.
Решение. Из (1) следует, что для любых преобразований f и g всегда выполняется равенство . Из него видно, что для того, чтобы
, необходимо и достаточно выполнения условия f = fg. Если теперь f и g – подобия и A – единственная неподвижная точка подобия f (центр подобия), то она будет неподвижной при преобразовании fg = f. С другой стороны, по теореме о неподвижной точке подобие fg имеет неподвижную точку g(A). В силу единственности неподвижной точки подобия f = fg должно быть A = g(A), то есть A – неподвижная точка подобия g.
Библиографический список
1. Понарин, Я.П. Перемещения и подобия плоскости. [текст]/ Скопец З.А. – К.: Радянська школа, 1981. – 175 с.
2. Понарин, Я.П. Преобразования пространства. [текст] – Киров: Издательство ВГПУ, 2000. – 80 с.
3. Яглом, И.М. Идеи и методы аффинной и проективной геометрии. Часть 1. [текст]/ В.Г. Ашкинузе. – М.: Учпедгиз, 1962. – 247 с.
4. Скопец, З.А. Геометрические миниатюры. [текст]/ Сост. Г.Д. Глейзер. – М.: Просвещение, 1990. – 224 с.
5. Бахман, Ф. Построение геометрии на основе понятия симметрии. [текст] – М.: Наука, 1969.