85723 (612561), страница 2

Файл №612561 85723 (Локальные формации с метаабелевыми группами) 2 страница85723 (612561) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Определение 2.3. Класс групп называется классом Фиттинга, если он одновременно -замкнут и -замкнут.

Класс Фиттинга мы будем в дальнейшем называть иначе радикальным классом. Ввиду двойственности (нормальная подгруппа – фактор-группа) формацию можно было бы назвать корадикальным классом.

Определение 2.4. Пусть непустой -замкнутый класс, содержащий 1. Обозначим через и назовем - радикалом группы произведение всех ее нормальных -подгрупп.

Классы являются радикальными. -радикал группы – это ее подгруппа Фиттинга -радикал обозначают иначе через и называют -радикалом. -радикал называют разрешимым радикалом; понятны также термины -нильпотентный радикал, -замкнутый радикал и т.д. Класс всех -нильпотентных групп является одновременно радикальным и корадикальным; – это -нильпотентный радикал группы .

В дальнейшем мы будем изучать формации, замкнутые относительно тех или иных операций; в частности, будут рассматриваться радикальные формации, т.е. формации, являющиеся одновременно и классами Фиттинга. Сейчас мы обратимся к задаче построение формаций с помощью операций

Теорема 2.1. Пусть и – формации, причем либо , либо замкнута относительно нормальных подгрупп. Тогда – формация, совпадающая с произведением

Определение 2.5. Пусть – некоторое множество групп. Пусть – пересечение всех тех формаций, которые содержат класс называется формацией, порожденной множеством групп

Заметим, что операцию часто обозначают иначе через Если то пишут вместо , причем в этом случае называют формацией, порожденной группой .

Теорема 2.2. Для любого класса имеет место равенство:

Доказательство. Если , то , и утверждение верно. Пусть . Так как , то класс является -замкнутым. есть класс и по лемме 2.2. Используя это и леммы 2.3 и 2.4, получаем

Последнее означает -замкнутость класса . Итак, – формация, содержащая , так как . Значит, . Обратное включение очевидно.

Лемма 2.5. Для любых элементов группы выполняются равенства Если – подгруппы группы , то выполняются следующие утверждения:

1)

2) для любого гомоморфизма группы ; в частности, если группа из нормализует и , то нормализует и

Лемма 2.6 Пусть – подгруппа нильпотентной группы , причем . Тогда

Доказательство. Для того чтобы доказать лемму, достаточно установить, что при любом натуральном выполняется включение:

При это верно, так как , а значит, . Предположим, что включение (*) справедливо при некотором . Тогда, используя лемму 2.5, получаем

Тем самым (*) доказано.

Теорема 2.3 (Брайант, Брайс, Хартли [1]). Если – такая подгруппа группы , что , то

Доказательство. Пусть – нильпотентная нормальная подгруппа группы , а – такая подгруппа из , что . Докажем индукцией по , что . Это верно, если . Поэтому будем считать, что . Рассмотрим следующие подгруппы прямого произведения

Очевидно, подгруппа нормализует и . Обозначим через подгруппу группы , порожденную подгруппами . Поскольку проекции на множители прямого произведения равны , то . Заметим еще, что , где нормальна в и нильпотентна как подпрямое произведение из .

Пусть – центр подгруппы , . Легко видеть, что , причем и поэлементно перестановочны; аналогично, и поэлементно перестановочны. Но тогда , абелева и нормальна в . Если , то , где , и если , то , что влечет . Следовательно, . Если абелева, то , и мы имеем

Предположим теперь, что . Ясно, что . Так как

то нильпотентна ступени . Так как , то изоморфна и имеет ступень , а потому согласно лемме 2.6 ее нормальное замыкание в имеет ступень . Так как нормализует и , то нормальна в . Итак, , причем . По индукции

Для группы и ее нильпотентной нормальной подгруппы ступени теорема также верна по индукции. Поэтому

Теорема доказана.

Теорема 2.4. (Нейман [1]) Формация, порожденная разрешимой группой, содержит лишь конечное число подформаций.

Доказательство. Пусть – подформация формации . Если , то по теореме 2.3 имеет место , что и требуется.

Экраны

Недостатком понятия групповой функции является то, что не всегда уплотнение -центрального ряда нормальными подгруппами является -центральным рядом.

Определение 3.1. Отображение класса всех групп в множество классов групп назовем экраном, если для любой группы выполняются следующие условия:

1) – формация;

2) для любого гомоморфизма группы ;

3) .

Из условия 2) вытекает, что экран принимает одинаковое значение на изоморфных группах, т.е. является групповой функцией в смысле определения 3.1. Кроме того, видно, что если – экран, то каждый f-центральный ряд после удаления повторений может быть уплотнен до f-центрального главного ряда, а значит, класс групп, обладающих f-центральными рядами, совподает с формацией .

Лемма 3.1. Пусть – экран, – группа операторов группы , – некоторая нормальная -допустимая подгруппа из . Если обладает нормальным -допустимым рядом, факторы которого -центральны относительно , то один из таких рядов проходит через .

Доказательство. Пусть дан ряд, удовлетворяющий условию леммы:

Пусть . Тогда ряд

будет искомым. В этом нетрудно убедиться, используя определение экрана и -изоморфизмы:

Лемма 3.2. Справедливы следующие утверждения:

1) пересечение любого непустого множества экранов также является экраном;

2) объединение любой непустой цепи экранов также является экраном.

Доказательство. Первое утверждение очевидно. Пусть непустое множество экранов является цепью, т.е. линейно упорядочено (с отношением частичной упорядоченности , введенным в определении 3.5). Тогда для любой группы множество формаций линейно упорядочено относительно включения, а следовательно, ввиду леммы 1.1 объединение является формацией. Тем самым лемма доказана.

Определение 3.2. Экран назовем:

1) p-однородным, если он p-постоянен и для любой группы и ее силовской p – подгруппы имеет место ;

2) однородным, если он p-однороден для любого простого p;

3) локальным, если он является локальной групповой функцией;

4) композиционным, если для любой группы имеет место , где пробегает все крмпозиционные факторы группы

5) пустым, если для любой неединичной группы ;

6) -экраном, если для любой группы .

-экран при будем называть единичным экраном.

Легко видеть, что каждый локальный экран является однородным, а каждый композиционный экран является примарно постоянным.

Пример 3.1. Пусть и – непустые формации, причем , а групповая функция такова, что для каждой нееденичной примарной группы и для любой непримарной группы . Тогда – однородный экран, не являющийся ни локальным, ни композиционным.

Пример 3.2. Пусть – непустая формация, а групповая функция такова, что для любой нееденичной группы выполняются условия:

1) , если не имеет абелевых композиционных факторов;

2) , если имеет хотя бы один абелев композиционный фактор.

Тогда – композиционный экран, не являющийся однородным.

Замечание 1. Локальный экран полностью определяется своими значениями на примарных подгруппах. Поютому, чтобы построить локальный экран , достаточно каждому простому числу поставить в соответствие некоторую формацию , а затем для любой группы положить , где пробегает .

Замечание 2. Чтобы построить композиционный экран , нужно каждой простой группе поставить в соответствие некоторую формацию , а затем для любой группы положить , где пробегает все композиционные факторы группы .

Лемма 3.3. Справедливы следующие утверждения: 1) пересечение любого непустого множества однородных экранов снова является однородным экраном;

2) пересечение любого непустого множества локальных экранов снова является локальным экраном;

3) пересечение любого непустого множества композиционных экранов снова является композиционным экраном.

Доказательство. Пусть экран является пересечением множества экранов . Предположим, что все экраны являются локальными, т.е. для любых и имеет место равенство:

где пробегает все примарные подгруппы группы . Тогда

а значит, – локальный экран.

Лемма 3.4. Объединение любой непустой цепи примарно постоянных экранов является примарно постоянным экраном.

Доказательство. Пусть – некоторая цепь экранов, – ее объединение, . По лемме 3.3 функция является экраном, причем ясно, что примарная постоянность влечет примарную постоянность экрана . Предположим, что все являются однородными экранами. Тогда, если – любая группа и , то . Следовательно,

что и доказывает однородность экрана .

Экраны формаций

Каждой групповой функции соответствует формация .

Лемма 3.5. является непустой формацией для любой групповой функции .

Определение 3.3. Пусть – некоторая формация. Если – такой экран, что , то формация называется ступенчатой формацией, причем в этом случае будем говорить, что

Характеристики

Тип файла
Документ
Размер
13,83 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее