84063 (612436), страница 4

Файл №612436 84063 (История статистики) 4 страница84063 (612436) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Наиболее совершенным методом выявления тенденции ряда динамики является метод аналитического выравнивания, который заключается в замене первоначальных уровней ряда новыми, найденными во времени "t" построением аналитического уравнения связи.

Рассмотрим на примере возможности применения каждого из методов выравнивания при выявлении тенденции ряда динамики.

Известны следующие данные выполнения программы участком "молдинги" цеха ЗИЛ-130 прессового корпуса за 1989 г. (табл.6.2).

Таблица 6.2

Месяц

Выполнение программы, млн. руб.

t

t2

ty

= 18,6 + 0,09t

I

18,6

-6

36

-111,6

18,1

II

17,3

-5

25

-86,5

18,2

III

18,9

-4

16

-75,6

18,3

IV

18,2

-3

9

-54,6

18,3

V

17,9

-2

4

-35,8

18,4

VI

19,1

-1

1

-19,1

18,5

VII

19,6

1

1

19,6

19,2

VIII

17,5

2

4

35,0

19,1

IX

19,2

3

9

57,6

19,0

X

19,8

4

16

79,2

18,9

XI

18,3

5

25

91,5

18,8

XII

19,4

6

36

116,4

18,7

Итого:

223,8

0

182

16,1

223,5

1. По методу укрупнения интервалов имеем новые укрупненные поквартально уровни ряда динамики:

у1 = 18,6 + 17,3 + 18,9 = 54,8;

y2 = 18,2 + 17,9 + 19,1 = 55,2 и т.д.

Выровненный ряд динамики примет вид: 54,8 55,2 56,3 57,5.

То есть наблюдается четно выраженная тенденция увеличения выпуска молдингов цехом за 1989 г.

2. Употребляя те же данные, применим метод скользящей средней, используя семичленную скользящую среднюю. Тогда:

= = 18,5;

= = 18,4 и т.д.

Выравненный с помощью семичленной скользящей средней ряд динамики примет вид: 18,5 18,4 18,6 18,7 18,8 19,0.

Таким образом, подтверждается тенденция увеличения выпуска молдингов в течение 1989 г.

3. Используя метод отсчета от условного нуля введем условное обозначение времени "t", придав ему определенные значения так, чтобы ∑t = 0 (см. табл. 6.2).

Судя по выявленной с помощью двух предыдущих методов тенденции выпуска молдингов в течение года, можно сказать, что наиболее вероятна линейная зависимость данного распределения от времени "t" и данному распределению соответствует уравнение прямой = a0 + a1t.

Для нахождения параметров a0 и a1 используем систему уравнений

,

так как ∑t = 0, о имеем

a0 = = = 18,6;

a1 = = = 0,09.

Следовательно, уравнение прямой примет вид:

= 18,6 + 0,09t и будет в данном случае искомым, так как ∑y = ∑ .

Тема 7. Показатели вариации

Наряду со средней величиной, характеризующей типичный уровень варьирующего признака, около которого колеблются отдельные значения признака, рассматривают показатели вариации (колеблемости) признака, позволяющие количественно измерить величину этой колеблемости.

К показателям вариации относят: размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации.

Простейшим показателем вариации является размах вариации, который рассчитывается по следующей формуле:

R = Xmax – Xmin,

где Xmax, Xmin - соответственно, максимальное и минимальное значения признака в исследуемой совокупности.

Размах вариации характеризует диапазон колебаний признака в изучаемой совокупности и измеряется в тех же единицах, в которых выражен признак.

Рассчитывают среднее линейное отклонение, которое бывает невзвешенное и взвешенное. Если каждое значение признака встречается в совокупности один раз, то применяется формула среднего линейного отклонения невзвешенного:

,

где x - значение признака;

n - количество вариант.

Если имеется некоторая повторяемость значений признака, то применяется формула среднего линейного отклонения взвешенного:

,

где m - частота.

Среднее линейное отклонение характеризует абсолютный размер колеблемости признака около средней и измеряется в тех же единицах, в которых выражен признак.

Наиболее точным показателем вариации является среднее квадратическое отклонение. Для его определения предварительно рассчитывают показатель дисперсии. Дисперсия невзвешенная определяется по формуле:

σ2 = .

Дисперсия взвешенная определяется по формуле:

σ2 = .

Тогда, соответственно, для расчета среднего квадратического отклонения невзвешенного используют формулу:

σ = ,

а для расчета среднего квадратического отклонения взвешенного - следующую формулу:

σ = .

Как и среднее линейное отклонение, среднее квадратическое отклонение характеризует абсолютный размер колеблемости признака около средней, однако является более точной характеристикой.

В отличие от среднего линейного и среднего квадратического отклонения коэффициент вариации является мерой относительной колеблемости признака около средней и характеризует степень однородности признака в изучаемой совокупности. Он определяется по формуле:

υσ = 100%.

Если исследуемую совокупность единиц расчленить на группы, то вправе считать, что общая дисперсия всей совокупности варьирует (изменяется) под влиянием дисперсий для каждой отдельной группы, так называемых групповых или частных дисперсий и межгрупповой дисперсии. Эти дисперсии связаны между собой правилом сложения дисперсий. При использовании правила сложения дисперсий в экономическом анализе по величине частной дисперсии может решаться задача выявления наиболее эффективной в производстве системы (формы, структуры и т.п.) организации труда, его оплаты и т.п.

Частные или групповые дисперсии характеризуют колеблемость изучаемого признака в каждой отдельной группе и определяются по следующей формуле:

и их средняя величина

,

где i = 1, 2, …, n - номер группы;

mi - численность единиц в группе.

Межгрупповая дисперсия характеризует колеблемость частных средних около общей средней и определяется следующим образом:

γ2 = .

При соблюдении правила сложения дисперсий должно соблюдаться равенство:

σ2 = + γ2.

Проиллюстрируем расчет показателей вариации по данным о распределении рабочих по стажу работы (табл. 7.1).

1. R = Xmax – Xmin = 14 – 10 = 4 года, т.е. диапазон колебания стажа рабочих в исследуемой совокупности составляет 4 года.

2. = = 11,4 года

= = 1,1 года.

Таблице 7.1

Стаж работы рабочих

Стаж работы рабочего, лет (x)

Число рабочих, чел. (m)

x∙m

x –

| x – |m

(x – )2

(x – )2m

10

14

140

-1,4

19,6

1,96

27,44

11

11

121

-0,4

4,4

0,16

1,76

12

8

96

0,6

4,8

0,36

2,88

13

6

78

1,6

9,6

2,56

15,36

14

4

56

2,6

10,4

6,76

24,04

Итого

43

491

48,8

11,80

74,48

В среднем на 1,1 года отклоняется стаж отдельных рабочих от среднего стажа по совокупности.

3. σ2 = = = 1,73;

σ = = = 1,3 года.

Величина σ = 1,3 года характеризует колеблемость стажа работы рабочих в данной совокупности:

υσ = 100 = 100 = 11,4%.

Таким образом, на 11,4% варьирует состав рабочих по стажу работы в исследуемой совокупности.

Тема 8. Индексы

В статистике индексами называют относительные величины, показывающие соотношение показателей во времени, пространстве, а также фактических показателей с плановыми.

Характеристики

Тип файла
Документ
Размер
2,35 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее