84063 (612436), страница 8

Файл №612436 84063 (История статистики) 8 страница84063 (612436) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Рассмотрим эти этапы более подробно.

1. Так как для установления закона распределения необходимы большие выборки, то на практике часто встает вопрос об объединении нескольких выборок, каждая из которых мала для решения поставленной задачи и получения одной общей выборки, удовлетворяющей предъявленным к ней требованиям. Поэтому, что вообще свойственно для статистической обработки, любое из неправильных решений (как положительное, так и отрицательное) по поводу объединения выборок приводит к нежелательным результатам, или к невозможности установить закон распределения, если выборки не объединяются, или к неправильному выводу о характере закона распределения.

Для решения этой задачи используют критерии, с помощью которых с разной формулировкой фактически дается ответ на один и тот же вопрос: принадлежат или не принадлежат исследуемые выборки одной генеральной совокупности, то есть автоматически решается задача о возможности или невозможности их объединения. Как правило, все эти критерии основаны на сравнении выборочных характеристик (выборочных дисперсий или средних величин) между собой или с соответствующими генеральными характеристиками. В большинстве случаев использование этих критериев предполагает нормальный или логарифмически-нормальный закон распределения для каждой выборки. При других же законах распределения эти критерии некорректны и их использование может привести к ошибочным результатам.

Наиболее используемыми являются следующие критерии:

а) критерии, основанные на сравнении дисперсий: критерий , критерий Фишера (F = ), критерий Хартлея (Fmax = ), критерий Кочрена (Gmax = ), критерий Бартлета (χ2);

б) критерии, основанные на сравнениях средних величин: критерий Стьюдента (t), критерий Z и другие.

Для всех критериев в качестве нулевой гипотезы (H0) выдвигается предположение о принадлежности выборки генеральной совокупности или об однородности выборок между собой.

2. При наличии выборки, удовлетворяющей требованиям относительно ее пригодности для установления закона распределения перед тем, как приступить к определению статистических характеристик, необходимо проверить, принадлежат ли к данной выборке ее члены, резко отличающиеся от большинства данных, если таковые имеются. Такая проверка строго обязательна, так как любое неверное решение в отношении резко отличающихся результатов приводит к искажению вида кривой закона распределения и к последующим ошибкам, о которых уже говорилось выше. Описанная проверка также осуществляется с помощью соответствующих критериев: критерия Груббса (для малых выборок), критерия Ирвина и некоторых других. В качестве нулевой гипотезы во всех случаях принимается предположение о том, что резко выделяющиеся результаты принадлежат данной выборке.

3. Заключительной и самой трудоемкой проверкой является проверка гипотез о виде функции распределения или, что то же, о соответствии предполагаемого закона теоретического распределения эмпирическому. Эта проверка осуществляется с помощью так называемых критериев согласия. Существуют критерии для проверки соответствия как предполагаемому нормальному или логарифмически-нормальному закону распределения, так и любому другому закону распределения.

Наиболее используемыми при практических расчетах являются следующие критерии:

а) критерий Пирсона (χ2); он справедлив при больших объемах выборок и для любых законов распределения;

б) критерий Колмогорова-Смирнова (Du); этот критерий используется для проверки гипотезы о соответствии эмпирического распределения любому теоретическому закону распределения с заранее известными параметрами, что накладывает ограничения на его использование. В то же время Du является более мощным, чем критерий χ2;

в) критерий Крамера-Мизеса (2); данный критерий используется для объемов выборок 50 n 200 и является более мощным, чем χ2, однако, при его применении требуется больший объем вычислений. Поэтому при n > 200 этот критерий целесообразно использовать только в тех случаях, когда проверки гипотезы по другим критериям не приводят к безусловным результатам;

г) критерий Шапиро-Уилкса (W); он предназначен для проверки гипотезы о нормальном или логарифмически нормальном законе распределения при ограниченном объеме выборки (n 50) и является более мощным, чем другие критерии.

Укрупненно порядок проведения статистической обработки информации можно представить следующим образом: после решения вопроса об объеме выборки и принадлежности к ней резко отличающихся результатов, строится гистограмма, рассчитываются статистические характеристики исследуемой случайной величины, и устанавливается закон ее распределения.

При решении технических и экономических задач существует достаточно широкий круг законов распределения, которым подчиняются те или иные процессы. К ним относятся законы Вейбулла, Релея, экспоненциальный, гамма-распределения, однако, самыми распространенными являются нормальный (Гаусса) и логарифмически-нормальный законы распределения. Получив математическое выражение закона распределения, то есть соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями, можно утверждать, что с вероятностной точки зрения, случайная величина описана полностью.

Характеристики

Тип файла
Документ
Размер
2,35 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее