5194-1 (612435), страница 2

Файл №612435 5194-1 (Устойчивость систем дифференциальных уравнений) 2 страница5194-1 (612435) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

2) вещественны и . Полученные в случае узла формулы сохраняют силу. Соответствующая геометрическая картина, называемая седлом, изображена на рис. 1б.

3) комплексно-сопряженные. Пусть . В преобразовании X = SY , где и — линейно независимые собственные векторы, соответствующие и . Так как А вещественна, и можно выбрать комплексно-сопряженными. Тогда и . Положим , , а в качестве фазовой плоскости возьмем . Переменная связана с Х соотношением X = SY = = STZ = QZ, где , . Следовательно, Q — вещественная неособая матрица. Преобразование приводит к виду

где матрица коэффициентов образует вещественную жорданову форму матрицы А.

Введем полярные координаты , или , . Имеем: . Отделяя вещественные и мнимые части, получим:

.

Следовательно, . При траектории образуют спирали (рис. 1в). Такое положение траекторий называется фокусом. При все траектории — окружности. В этом случае получаем центр. В случае центра все решения системы (3) периодические с периодом 2/.

4) . Жорданова форма матрицы А имеет треугольный вид, а система преобразуется к виду

Решением этой системы будет функция . В зависимости от формы матрицы J получаются два случая: или вырожденный узел (рис. 1г), либо звездный (дикритический) узел. Дикритический узел возможен лишь в случае системы

Рис. 1. Поведение траекторий в зависимости от значений собственных чисел

1.5. Линейные однородные системы с периодическими коэффициентами.

В данном пункте излагается так называемая теория Флоке.

Будем рассматривать систему вида (4)

где , а матричная функция P(t) удовлетворяет условию P(t + ) = P(t), >0 при всех . Такие матричные функции будем называть периодическими с периодом  или -периодическими.

Теорема Флоке. Фундаментальная матрица системы (4) имеет вид

где G — -периодическая матрица, R — постоянная матрица.

Матрица В, определяемая равенством , называется матрицей монодромии. Для нее справедливо . Она определяется с помощью фундаментальной матрицы неоднозначно, но можно показать, что все матрицы монодромии подобны. Часто матрицей монодромии называют ту, которая порождается нормированной при фундаментальной матрицей , то есть .

Собственные числа матрицы монодромии называются мультипликаторами уравнения (4), а собственные числа матрицы R — характеристическими показателями. Из определения R имеем , при этом простым мультипликаторам соответствуют простые характеристические показатели, а кратным — характеристические показатели с элементарными делителями той же кратности.

Характеристические показатели определены с точностью до . Из и формулы Лиувилля следует, что .

Название мультипликатор объясняется следующей теоремой:

Теорема. Число  является мультипликатором уравнения (4) тогда и только тогда, когда существует ненулевое решение этого уравнения такое, что при всех t .

Следствие 1. Линейная периодическая система (4) имеет нетривиальное решение периода  тогда и только тогда, когда по меньшей мере один из ее мультипликаторов равен единице.

Следствие 2. Мультипликатору соответствует так называемое антипериодическое решение периода , т. е. . Отсюда имеем:

Таким образом, есть периодическое решение с периодом . Аналогично, если (p и q — целые, ), то периодическая система имеет периодическое решение с периодом .

Пусть , где — матрица из теоремы Флоке, — ее жорданова форма. По теореме Флоке , или , (5)

где — фундаментальная матрица, — -периодическая матрица. В структуре фундаментальной матрицы линейной системы с периодическими коэффициентами характеристические показатели играют ту же роль, что и собственные числа матрицы коэффициентов в структуре фундаментальной матрицы линейной системы с постоянными коэффициентами.

Пример. Рассмотрим дифференциальное уравнение второго порядка

, (6)

где — -периодическая вещественная скалярная функция. Мультипликаторами уравнения (6) будем называть мультипликаторы соответствующей линейной системы, т. е. системы

с матрицей . Так как , то . Мультипликаторы являются собственными числами матрицы

,

где — решение уравнения (6), удовлетворяющее начальным условиям , а — решение уравнения (6), удовлетворяющее начальным условиям . Пусть — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где .

2. Устойчивость решений систем дифференциальных уравнений.

2.1. Устойчивость по Ляпунову.

Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует траекторию с точки зрения поведения соседних траекторий, располагающихся в ее окрестности. Предположим, что система при старте из начальной точки порождает траекторию . Рассмотрим другую траекторию той же системы , стартовая точка которой близка к . Если обе траектории остаются близкими в любой последующий момент времени, то траектория называется устойчивой по Ляпунову.

Наглядная иллюстрация устойчивости по Лагранжу, Пуассону и Ляпунову приводится на рис. 2. Когда говорят просто об устойчивой траектории, то всегда имеется в виду устойчивость по Ляпунову.

Рис. 2. Качественная иллюстрация устойчивости по Лагранжу (траектория остается в замкнутой области), по Пуассону (траектория многократно возвращается в -окрестность стартовой точки) и по Ляпунову (две близкие на старте траектории остаются близкими всегда)

Рассмотрим уравнение (1)

где и функция f удовлетворяет в G условию Липшица локально:

и , где — константа, не зависящая от выбора точек и .

Предположим, что уравнение (1) имеет решение , определенное при , и что . Чтобы перейти к исследованию нулевого решения, выполним в (1) замену . В результате получим уравнение

, (2)

где определена в области, содержащей множество . Это уравнение называется уравнением в отклонениях. Пусть — решение (2) с начальными данными .

Определение. Решение уравнения (2) называется устойчивым по Ляпунову, если для , такое, что при .

Решение называется асимптотически устойчивым, если оно устойчиво по Ляпунову и существует такое, что при .

Неустойчивость решения означает следующее: существуют положительное , последовательность начальных точек при , и последовательность моментов времени такие, что .

При исследовании вопроса об устойчивости решений часто прибегают к заменам переменных, позволяющим упростить вид рассматриваемого уравнения. Сделаем в (2) замену , где функция определена при всех и непрерывна по z при равномерно относительно , причем . Пусть уравнение однозначно разрешимо относительно z: , где определена на множестве и непрерывна по y при равномерно относительно . Пусть уравнение (2) заменой можно преобразовать в уравнение .

Лемма. При сделанных предположениях нулевое решение уравнения (2) устойчиво по Ляпунову, асимптотически устойчиво или неустойчиво тогда и только тогда, когда соответственно устойчиво по Ляпунову, асимптотически устойчиво или неустойчиво нулевое решение уравнения .

Пусть уравнение (2) автономно, а его нулевое решение асимптотически устойчиво. Множество называется областью притяжения решения .

2.2. Устойчивость линейных однородных систем.

Пусть (3)

— вещественная система, — ее произвольное решение. Замена приводит (3) к виду , т. е. произвольное решение уравнения (3) переводится в тривиальное решение того же уравнения. Следовательно, все решения уравнения (3) устойчивы по Ляпунову, асимптотически устойчивы или неустойчивы одновременно. Поэтому можно говорить об устойчивости уравнения (3), понимая под этим устойчивость всех его решений, в частности тривиального.

Лемма 1. Пусть и или , где — неособая при всех матрица, ограниченная по норме вместе с обратной . Тогда ограничена, не ограничена или бесконечно мала по норме при тогда и только тогда, когда обладает таким свойством.

Лемма вытекает из оценки .

Следствие. Пусть , — нормированная при фундаментальная матрица уравнения (3). Любая фундаментальная матрица уравнения (3) ограничена, не ограничена или бесконечно мала по норме вместе с .

Теорема 1. 1) Для того чтобы уравнение (3) было устойчивым по Ляпунову, необходимо и достаточно, чтобы его фундаментальные матрицы были ограничены при . 2) Для того чтобы уравнение (3) было асимптотически устойчивым, необходимо и достаточно, чтобы его фундаментальные матрицы были бесконечно малыми при .

Доказательство. 1) Достаточность. Пусть ограничена на . Решение задается формулой . (*)

Так как , то . Следовательно, уравнение (3) устойчиво по Ляпунову, так как устойчиво его тривиальное решение. Действительно, если , то при всех . (**)

Необходимость. Пусть уравнение (3) устойчиво по Ляпунову. Тогда устойчиво его тривиальное решение, и выполняется (**). Пусть фиксировано. Положим . Если , то . Из (*) и (**) имеем , т. е. ограничена. Аналогично доказывается ограниченность , а вместе с ними и матрицы .

2) Достаточность. Пусть при . В силу (*) при всех , что и дает асимптотическую устойчивость.

Необходимость. Пусть для любых при . Положим . В силу (*) , следовательно, . Аналогично доказывается, что , , что означает при . Теорема доказана.

Применим теорему 1 к исследованию устойчивости уравнения (3) с постоянной матрицей коэффициентов P. Уравнение (3) в этом случае имеет фундаментальную матрицу , , где — жорданова форма матрицы P. По теореме 1, лемме 1 и следствию к ней устойчивость по Ляпунову, асимптотическая устойчивость и неустойчивость уравнения (3) эквивалентны соответственно ограниченности, бесконечной малости и неограниченности матрицы при . Отсюда получаем следующую теорему:

Теорема 2. Линейная однородная система с постоянным коэффициентами: 1) устойчива по Ляпунову тогда и только тогда, когда среди собственных чисел матрицы коэффициентов нет таких, вещественные части которых положительны, а число мнимые и нулевые собственные числа либо простые, либо имеют только простые элементарные делители; 2) асимптотически устойчива тогда и только тогда, когда все собственные числа матрицы коэффициентов имеют отрицательные вещественные части.

Характеристики

Тип файла
Документ
Размер
17,16 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее