5194-1 (612435), страница 3

Файл №612435 5194-1 (Устойчивость систем дифференциальных уравнений) 3 страница5194-1 (612435) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Ниже рассматриваются необходимые и достаточные условия отрицательности корней характеристического уравнения линейной однородной системы с постоянными коэффициентами — критерий Гурвица (Рауса-Гурвица), а также частотный критерий Михайлова, являющийся геометрическим признаком, эквивалентным критерию Гурвица.

Определение. Полином , где , , называется полиномом Гурвица, если все его корни имеют отрицательные вещественные части.

Если полином является полиномом Гурвица, то все .

Составим -матрицу Гурвица вида

Теорема Гурвица (критерий Гурвица). Для того чтобы полином являлся полиномом Гурвица, необходимо и достаточно, чтобы были положительны все главные диагональные миноры его матрицы Гурвица :

Если степень полинома сравнительно большая, то применение критерия Гурвица становится затруднительным. В этом случае для определения расположения корней полинома на комплексной плоскости иногда оказывается более удобным использование частотного критерия Михайлова.

Определение. Пусть , где , , . Кривая , называется годографом Михайлова функции .

Критерий Михайлова непосредственно следует из леммы:

Лемма 2. Угол поворота в положительном направлении ненулевого вектора при равен , где — число корней полинома с положительной вещественной частью с учетом их кратностей.

Критерий Михайлова. Для того чтобы полином , не имеющий чисто мнимых корней, являлся полиномом Гурвица, необходимо и достаточно, чтобы угол поворота в положительном направлении вектора при был бы равен .

Замечание. Если полином есть полином Гурвица степени , то вектор монотонно поворачивается в положительном направлении на угол , то есть годограф Михайлова, выходя из точки положительной полуоси , последовательно пересекает полуоси , проходя квадрантов.

2.3. Устойчивость периодических решений.

Рассмотрим уравнение (3) с периодическими коэффициентами, т. е. , (4)

где . По формуле (5) предыдущей главы уравнение (4) имеет в рассматриваемом случае фундаментальную матрицу , где — неособая -периодическая непрерывная матрица, тем самым ограниченная вместе с обратной, — жорданова матрица, собственные числа которой — характеристические показатели уравнения (4). Из леммы 1 следует, что характеристические показатели играют при оценке фундаментальной матрицы ту же роль, что собственные числа , когда постоянна. Учитывая, что , где — мультипликаторы уравнения, получаем следующий результат:

Теорема 3. Линейная однородная система с периодическими коэффициентами: 1) устойчива по Ляпунову тогда и только тогда, когда все ее мультипликаторы не превышают по модулю единицы, а равные единице по модулю либо простые, либо им соответствуют простые элементарные делители матрицы монодромии; 2) асимптотически устойчива тогда и только тогда, когда модули всех мультипликаторов меньше единицы.

Пример. Рассмотрим уравнение из примера п. 1.5:

Уравнение будем называть устойчивым по Ляпунову, асимптотически устойчивым или неустойчивым, если таковой является соответствующая ему линейная система. Мультипликаторы находятся из уравнения : , где . Поэтому можно сделать вывод, что при оба мультипликатора вещественны и один из них по абсолютной величине больше единицы, а при мультипликаторы являются комплексно-сопряженными с модулями, равными единице. По теореме 3 при уравнение неустойчиво, а при оно устойчиво по Ляпунову, но не асимптотически.

2.4. Классификация положений равновесия системы второго порядка.

Исследуем на устойчивость положения равновесия линейной однородной системы двух уравнений с постоянными коэффициентами. Пусть , где . Как было показано в пункте 1.4, тип особой точки такой системы определяется корнями характеристического уравнения или . Его корни можно найти по формуле

.

Рассмотрим следующие случаи согласно пункту 1.4.

1) вещественны, различны и ( ). Параметрические уравнения траекторий: . Положение равновесия называется узел. Если корни положительны ( ), то решения будут неограниченно возрастать, и особая точка — неустойчивый узел.

Если отрицательны ( ), то решения с ростом времени будут неограниченно уменьшаться, то есть положение равновесия будет асимптотически устойчивым. Особая точка — устойчивый узел.

2) вещественны и ( ). В этом случае одна из траекторий всегда будет неограниченно возрастать, а другая неограниченно уменьшаться. Таким образом, седло всегда неустойчиво.

3) комплексно-сопряженные, но не чисто мнимые ( ). Решение в полярных координатах запишется в виде , где . Если ( ), то спирали будут раскручиваться от особой точки, и фокус будет неустойчивым.

Если ( ), то особая точка — устойчивый фокус, причем устойчивость асимптотическая.

4) ( ). Особая точка — центр, траектории — окружности, то есть положение равновесия является устойчивым, но не асимптотически.

5) . Если , то получаем неустойчивый узел, либо вырожденный, либо дикритический. Если , положение равновесия будет асимптотически устойчивым.

6) Один из корней равен нулю (например ). Траекториями являются прямые, параллельные друг другу. Если , то получаем прямую неустойчивых особых точек. Если , то прямая будет содержать устойчивые особые точки.

7) Оба корня равны нулю. Тогда . Особая точка неустойчива.

Пример. Рассмотрим систему . Положение равновесия находится из уравнения , или , откуда . Следовательно, положение равновесия — неустойчивый узел. Жорданова форма матрицы А имеет вид:

.

Найдем координаты преобразования , приводящего матрицу А к жордановой форме, то есть переводящего систему к виду . Дифференцируя эти уравнения и подставляя в исходную систему, получаем:

откуда с учетом ,  — произвольное, ,  — произвольное. Получаем преобразование . Определим новое положение осей:

Решение системы запишется в виде , а исходной системы отсюда . Схематическое изображение траекторий:

Рассмотрим теперь некоторые положения равновесия в трехмерном пространстве. Характеристическое уравнение — кубическое с вещественными коэффициентами, оно может иметь три вещественных или один вещественный и два комплексно-сопряженных корня. В зависимости от расположения этих корней на плоскости возможно 10 "грубых" случаев (рис. 3, 1)-5) и 1')-5')) и ряд "вырожденных" (рис. 3, 6)-9)), когда вещественная часть одного из корней равна нулю или вещественной части не сопряженного с ним корня. Случаи кратных корней здесь не рассматриваются.

Поведение фазовых траекторий в приведенных случаях показано на рис. 4. Случаи 1')-5') получаются из случаев 1)-5) изменением направления оси t, так что на рис. 4 надо лишь заменить все стрелки на противоположные.

Устойчивость по Ляпунову в рассмотренных случаях следующая. Все случаи 1')-5'), а также 2), 5), 8) и 9) неустойчивы. Случаи 1), 3) и 4) устойчивы асимптотически. Случай 6) устойчив.

Рис. 3. Собственные числа матрицы А. Закрашенным кружком отмечены ,

светлым — начало координат.

Рис. 4. Фазовые кривые в трехмерном пространстве.

2.5. Автономные системы на плоскости. Предельные циклы.

Рассмотрим автономную двумерную систему

, (5)

где — область.

Предположим, что система (5) имеет замкнутую траекторию с наименьшим периодом . Возьмем произвольную точку и проведем через нее нормаль к единичной длины. Для определенности считаем, что направлен во внешнюю область. Не нарушая общности, считаем также, что — начало координат (этого можно добиться заменой ). Точки на нормали определяются единственной координатой . В качестве берем расстояние от точки нормали до начала координат, если точка лежит снаружи , и это расстояние, взятое с обратным знаком, если она лежит внутри .

Рассмотрим траектории , проходящие через точки нормали. Запишем уравнение

(6)

с неизвестными t, s ( — параметр).

Лемма 3. Существует такое, что в области уравнение (6) имеет единственное решение , удовлетворяющее условиям , причем функции непрерывно дифференцируемы при .

Доказательство. Так как — решение с периодом , то по теореме о дифференцируемости решения функция определена и непрерывно дифференцируема по t и  в некоторой окрестности точки . Тогда функция определена и непрерывно дифференцируема в некоторой окрестности точки . Так как ‑периодична, то . Рассмотрим якобиан в точке . Имеем . Следовательно, в точке , поскольку и — ортогональные векторы. Тогда утверждение леммы вытекает из теоремы о неявной функции.

Следствие. Справедлива формула

.

Выясним геометрический смысл функций . Лемма 3 утверждает, что каждая траектория, пересекающая нормаль в точке из -окрестности начала координат, вновь пересечет ее через промежуток времени в точке . При этом так как функция также делает полный оборот вдоль при , то траектория также делает полный оборот при , оставаясь в малой окрестности , если  достаточно мало.

Функция называется функцией последования.

Определение. Замкнутая траектория автономного уравнения (5) называется устойчивым предельным циклом, если существует такое , что является -предельным множеством для любой траектории, проходящей через точку из -окрестности кривой .

Характеристики

Тип файла
Документ
Размер
17,16 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее