10345 (600374), страница 2
Текст из файла (страница 2)
1.2.3 Структура хроматина
Универсальные компоненты хроматина - белки гистоны.
Гистоны - это небольшие по молекулярной массе белки с высоким содержанием положительно заряженных аминокислотных остатков - лизинов и аргининов, локализованных преимущественно в N- и С-концевых неструктурированных областях белка, так называемых «хвостах», которые играют главную роль в эпигенетических механизмах. В центральных, наиболее консервативных участках гистонов преобладают гидрофобные аминокислотные остатки, необходимые для белок-белкового узнавания. Существуют пять типов гистонов: HI, Н2А, Н2В, НЗ, Н4. Последовательность расположения гистонов в нуклеосоме одинакова для организмов-эукариотов всех царств живой природы: грибов, растений, животных.
Рассмотрим строение нуклеосомы. Нуклеосома состоит из восьми молекул комплекса гистонов: по два гистона Н2А и Н2В с высоким содержанием лизина, по два богатых аргинином гистона НЗ и Н4. Этот гистоновый октамер называется «кор» (от лат. cor - сердцевина) На кор навивается ДНК в виде левозакрученной суперспирали с шагом 28 А, содержащей 80 пар нуклеотидов на виток. Всего на кор в нуклеосоме навивается 1,75 витка или 146 пар нуклеотидов. Описанная нуклеосома носит название «минимальной» или «кор-нуклеосомы». Если в состав нуклеосомы входит гистон HI, который связывается с межнуклеосомной ДНК, или линкером, то такую нуклеосому называют полной; на неё навивается 2-2,5 витка ДНК (160-200 пар нуклеотидов).
В основе организации нуклеосомы лежит уровень многоуровневого узнавания. На первом уровне гистоны попарно узнают друг друга. Молекула каждого гистона состоит из центрального структурированного трёхспирального домена (одного длинного и двух коротких альфа-спиральных участков, соединённых петельным сегментом, так называемая гистонная укладка) и двух неструктурированных N и С-«хвостов». Спиральные домены гистонов взаимодействуют друг с другом («рукопожатие»), в результате чего образуются гетеродимеры НЗ - Н4 и Н2А - Н2В. Эти димеры образуют тетрамер НЗ - Н4 и два димера Н2А - Н2В, формирующие гистоновый октамер, который имеет клинообразную форму, обеспечивающую левое закручивание спирали ДНК вокруг себя. На его поверхности, обращённой к ДНК, формируются белковые структуры {мотивы), которые можно разделить на три основных типа.
Мотивы первого типа образованы спаренными петельными сегментами гистоновых димеров (бета-мосты).
Мотивы второго представляют собой спаренные N-концевые сегменты первых спиральных доменов каждого гистона в гетеродимерах. К третьему типу относят два мотива, которые формируются двумя дополнительными альфа спиральными участками гистона НЗ, расположенными по концам суперспирали
ДНК, где ДНК входит и покидает иуклеосому. Суммарное число всех мотивов равно 14, что соответствует числу витков двойной спирали ДНК, накрученной вокруг октамера.
Все эти мотивы содержат положительно заряженные аминокислоты (в основном аргинины), что обеспечивает электростатический контакт октамера с отрицательно заряженными фосфатами сахарного остова ДНК. При этом 14 малых бороздок ДНК втягивают в себя 14 аргинин содержащих мотивов гистонового октамера, расположенных на поверхности гистонового кора и обращенных к ДНК. Это приводит к жёсткому фиксированию ДНК, которое в малой степени зависит от её нуклеотидной последовательности, что и обеспечивает универсальность компактизации ДНК на нуклеосомах. Консервативная глобулярная часть гистонов участвует в формировании гистонового октамера и фиксировании на нём молекулы ДНК. Так обеспечивается первый уровень компактизации. При этом ДНК оказывается на поверхности кора и остаётся доступной для взаимодействия с другими белками. В последние годы изучалась роль гистоновых хвостов.
Согласно рентгеноструктурному анализу нуклеосом, суперспираль ДНК в нуклеосоме закручена так, что обеспечивается выход «хвостов» гистонов на поверхность нуклеосомы. «Хвост» гистона НЗ простирается далеко от места выхода на
поверхность нуклеосомы и фиксируется межнуклеосомными контактами. «Хвост» гистона Н4 имеет много контактов с поверхностью димера Н2А - Н2В соседней нуклеосомы. «Хвосты» гистонов выходят на поверхность хроматиновой фибриллы, участвуют в межнуклеосомном взаимодействии, очень подвижны и подвергаются многочисленным модификациям: ацетилированию, фосфорилированию, метилированию, убиквитинилированию и АДФ-рибозилированию. Эти модификации приводят к изменению заряда, гидрофобности и других свойств поверхности белковых глобул. В результате формируется сложная матрица для узнавания её другими регуляторными белками и внешними сигналами. Поскольку концевые домены гистонов участвуют и в межнуклеосомном взаимодействии, вышеперечисленные модификации влияют и на характер упаковки хроматиновой фибриллы, разрыхляя или, наоборот, уплотняя её, что, в свою очередь облегчает или затрудняет доступ к ДНК многочисленным регуляторным факторам.
Эти свойства «хвостов» гистонов в структуре нуклеосомы имеют большое значение для расшифровки и понимания механизмов функционирования хроматина, его поведения при активации генов, репрессии их и многих других процессов, связанных с доступом к ДНК /4/.
1.2.4 Характеристика «гистонового кода»
Наиболее разработанной в настоящее время моделью функционирования хроматина считается «гистоновый код». Это - разнообразный набор модификаций гистоиовых «хвостов» на поверхности нуклеосом, который можно целенаправленно менять и передавать по наследству. Он и определяет функциональное состояние гена.
«Гистоновый код», по-видимому, является основным эпигенетическим механизмом, контролирующим включение или выключение генов и передачу программы этого контроля по наследству от клетки к клетке.
«Гистоновый код» оказался идеальным эпигенетическим механизмом, с помощью которого можно писать программу каскадного включения - выключения генов при развитии, не затрагивая информацию о белках, записанную на самой ДНК.
Гипотеза «гистонового кода» предполагает, что маркировки на модифицированных концевых заменах гистонов должны узнаваться регуляторными белками. Первым был обнаружен так называемый бромодомен, который специфически узнает ацетилированные лизины на гистоновых «хвостах». Бромодомен присутствует во многих регуляторах транскрипции генов (например, белок TAFn250). (Субъединица базального транскипционного фактора TFIID) узнаёт, например, комбинацию нескольких ацетильных групп и имеет две последовательно расположенные копии бромодомена, каждая их которых узнаёт свою ацетильную группу.
Другой белковый домен, узнающий маркировки на гистоновых «хвостах», называется хромодоменом. Из несущих хромодомен белков лучше всего изучен НР1 (от англ. Heterochromatin protein). Этот белок принимает участие в структурной организации гетерохроматина - области хроматина, находящейся в высококонденсированном состоянии, где все гены репрессированы. Таким образом, белок НР1 - это маркёр неактивного состояния хроматина. Он имеет высокое сродство к метилированному 9-му лизину (Tys-9) гистона НЗ. Связываясь с метилированным Tys-9 НЗ в одной нуклеосоме, белок HP 1 в свою очередь, метилирует соседние нуклеосомы, что вызывает распознание области метилирования хроматина. Этим достигается эффект высококонденсированного состояния на протяжённых участках хроматина. В настоящее время ведётся поиск доменов, узнающих другие модификации «хвостов» гистонов (фосфорилирование, убиквитинилирование и АДФ-рибозилирование).
Существуют несколько вариантов реализации «гистонового кода».
Согласно одному из них, модификации гистоновых «хвостов», участвующих в межнуклеосомных взаимодействиях, изменяют их суммарный заряд, за счёт чего уменьшается степень компактизации хроматиновой фибриллы, и ДНК становится доступной для регуляторных белков. В этом случае роль ферментов, модифицирующих «хвосты» гистонов, заключается только в увеличении зоны модификаций, и как следствие - усиление эффекта компактизации либо декомпактизации.
Другой механизм изменения статуса гена, маркированного определёнными сигналами по «хвостам» гистонов, связан с факторами перестройки хроматина. В 1992 году на дрожжах впервые было показано, что в присутствии АТФ определенные белковые комплексы обладали способностью изменять структуру хроматина, удаляя или сдвигая нуклеосомы с регуляторных участков ДНК. При этом активировались молчащие гены. В состав такого комплекса входят белки, несущие бромодомены, хромодомены, избирательно узнающие модифицированные «хвосты» гистонов. Это позволяет целенаправленно доставлять комплекс к регуляторному участку гена, где и происходят структурные изменения в хроматине, облегчающие доступ к ДНК белкам, активирующим транскрипцию этого гена.
Получены данные, свидетельствующие, что белки, узнающие «гистоновый код», выполняют транспортную функцию: доставляют к необходимым генам комплекс регуляторных белков, порождающих целый каскад биохимических реакций в области хроматина, который соответствует регуляторному участку гена. В состав комплекса могут входить как модифицирующие белки, так и транскрипционные факторы.
Изучение эпигенетических механизмов уже перестало быть только проблемой фундаментальной науки. Известно, что уровень и характер метилирования ДНК отклоняется от нормы при канцерогенезе и старении. Понимание того, что метилирование ДНК определяется эпигенетическим молчанием хроматина, проливает свет на механизмы этих процессов. Расшифровка специфического эпигенетического «ракового кода» и «кода старения» на уровне метилирования ДНК имеет огромное практическое значение. Итак, сделаем вывод: многочисленные модификации гистоновых «хвостов», экспонированные на поверхности хроматиновой фибриллы, и их комбинации, огромный набор специализированных ферментов, узнающих эти комбинации, позволяют записать очень сложную программу последовательности включения - выключение генов. В этом случае генетической информации, записанной на ДНК, оказывается недостаточно для получения полноценного организма. К информации должна прилагаться инструкция по её использованию. Подтверждением вышесказанного могут служить огромные сложности при получении клонов животных. Если берётся ДНК из клетки любого органа и переносится в яйцеклетку, где всё подготовлено к тому, чтобы дать развитие новому организму, то выясняется, что эпигенетические механизмы развития в исходной клетке давно запущены, стереть эту информацию невозможно и многие гены уже никогда не смогут начать работать. Несмотря на то, что имеется полная генетическая копия, то есть геном представлен абсолютно такой же ДНК, как запустить программу развития, клетка не знает. Этой информацией обладают только ДНК половых клеток и так называемых эмбриональных стволовых клеток - первые деления оплодотворённой яйцеклетки. Только на этой стадии эпигенетические механизмы ещё не включены, и клетка может стать и клеткой печени, и клеткой мозга, и клеткой кожи. На начальных этапах исследования ДНК казалось, что, расшифровав полную генетическую информацию геномной ДНК, появится возможность управлять внутриклеточными процессами. Однако выясняется, что важна и эпигенетическая информация, язык которой гораздо сложнее и от полной расшифровки которой наука ещё очень далека. 1.3. Современные методы ДНК-технологии.
1.3.1 Содержание генетической инженерии
В предыдущих разделах описывались генетические и эпигенетические механизмы наследственности. Современные методики позволяют модифицировать наследственную информацию и конструировать организмы с заданными наследственными свойствами. Эти методы составляют предмет генетической инженерии.
Генетическая инженерия - это искусство использования знаний, методов и техники физико-химической биологии и молекулярной генетики для конструирования организмов с заданными наследственными свойствами. Конечная цель состоит в получение рекомбинантной ДНК с последующим включением её в реципиентную клетку или в осуществлении переноса целых хромосом от клеток-доноров в клетки-реципиентов. В основу генно- инженерных методов заложена способность ферментов (рестриктаз) расщеплять ДНК на отдельные нуклеотидные последовательности, которые могут быть использованы для встраивания их в геномы бактериальных плазмид и фагов с целью получения гибридных форм, состоящих из собственной ДНК и дополнительных встроенных фрагментов несвойственной им ДНК. Таким способом добиваются клонирования генов, когда выделяют нужный отрезок ДНК из какого-либо биообъекта и затем получают любое количество его, выращивая колонии генетически идентичных клеток, содержащих заданный участок ДНК. Другими словами, клонирование ДНК—это получение её генетически идентичных копий.
Генетическую инженерию подразделяют на генную инженерию, геномную инженерию, и хромосомную инженерию. Сущность первой состоит в целенаправленном использовании перестроек естественного генома, осуществляемых in vivo или in vitro, для изменения генетических характеристик известных вирусов и клеток. Примером генной инженерии in vitro является создание молекулярных химер из фрагментов ДНК разного происхождения, включения их в реципиентные клетки Е. coli, Вас. subtilis и др., с последующим культивированием этих организмов в целях получения необходимых белковых продуктов (пептидных гормонов, ферментов и т.д.)
Сущность геномной инженерии заключается в целенаправленной глубокой перестройке генома прокариот или эукариот вплоть до создания новых видов. При геномной инженерии добиваются внесения большого количества дополнительной генетической информации и в результате получают гибридный организм, отличающийся от исходного по ряду признаков.
В случае переноса изолированных хромосом от клетки-донора одного организма в клетку-реципиент другого организма, говорят о хромосомной инженерии. Благодаря хромосомной инженерии стали возможными получение высокомолекулярных БАВ, присущих человеку, лечение наследственных заболеваний, селекция пород домашних животных и различных видов растений.
1.3.2 Методы исследования структуры и функции гена
Образование новых сочетаний генов и их частей в природных условиях, по-видимому, не носит целенаправленного характера, и лишь жесткая проверка естественным отбором может оценить жизненную значимость таких преобразований геномов. Однако сознательное использование в лабораторных условиях основных генетических принципов, лежащих в основе природных перемещений генов, позволило разработать более эффективные системы передачи генетической информации между организмами и приступить к беспрецедентным по информативности исследованиям генетических явлений на молекулярном уровне.
Необходимость манипулирования генами диктуется конкретными задачами фундаментальных и прикладных исследований. Для понимания молекулярных механизмов функционирования отдельных генов и взаимосвязанных генетических систем большое значение имеет работа с изолированными генами. Такие исследования позволяют определить границы генов, выделить их в чистом виде и идентифицировать элементы структуры, существенные для функционирования. Доказательством функциональной значимости выделенного участка генома может быть только его нормальная экспрессия в модельной генетической системе. Поэтому следующим этапом исследования выделейного гена всегда является перемещение его в такую генетическую систему, где экспрессия гена легко обнаруживается. Результаты экспрессии оценивают либо по появлению белкового продукта, кодируемого исследуемым геном, либо по изменению функций биологической системы вследствие появления в ней новой ферментативной или другой активности, например по компенсации присутствующей в этой системе мутации. Таким образом, в результате исследования структуры конкретного гена и моделирования его экспрессии в искусственной генетической системе можно понять особенности его функционирования в живом организме. Подобный подход может быть успешно применен как к известным генам, которые выделяются целенаправленно, так и к неидентифицированным ранее последовательностям нуклеотидов, функциональную значимость которых определяют лишь после выделения их в чистом виде. Последний подход реализуется в так называемой обратной генетике.
В настоящее время с помощью методов генной инженерии получены данные о структуре и функционировании генов разнообразных организмов, что дало возможность перейти на качественно новый уровень генетических исследований. Это, во-первых, возможность переноса генова в ное для него генетическое окружение с дальнейшей его экспрессией, что ведет к изменению свойств организма, в геном которого вводится ген (например создание продуцентов биологически активных веществ или трансгенных животных), а также осуществление генотерапии наследственных и приобретенных заболеваний путем искусственного замещения мутантных аллелей. Во-вторых, стало реальным конструирование новых генов путем объединения in vitro как известных, так и новых, искусственно синтезированных последовательностей нуклеотидов. Этот подход используется в белковой инженерии для исследования функциональной значимости отдельных аминокислот и доменов в полипептидных цепях ферментов, а также для создания новых белков. В- третьих, в современной биотехнологии появилась возможность применять изолированные гены в составе генно-инженерных конструкций для получения пищевых продуктов и биологически активных веществ белковой природы