159008 (599044), страница 31

Файл №599044 159008 (Философия и методология науки) 31 страница159008 (599044) страница 312016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 31)

В предельно кратком изложения идеи Канта, относящиеся к проблемам становления методологии научного познания, сле­дующие:

- есть природа вещей самих по себе, но она принципиально не­познаваема и не может быть предметом научного познания,

- природа, понимаемая как совокупность вещей возможного опыта, познаваема и представляет предмет естествознания,

- знания о природе есть знания, получаемые а рпоп, но не вся­кие, а только те, которые можно проверить (подтвердить или опро­вергнуть) экспериментально (т е речь идет об априорных знаниях в пределах возможного опыта),

- научное знание отличается от других видов человеческого зна­ния системностью, системный и цельный характер знанию придает метод,

- объективное опытное знание - это не знание о вещах самих по себе, а общезначимое необходимое и всеобщее знание в пределах возможного опыта,

- систематическое единство рассудочной деятельности придает разум,

- метод, по Канту, - это способ действия согласно основополо­жениям, причем научные методы могут быть разными, но обяза­тельно систематичными,

- наилучший метод научного познания критический.

Идеи Канта сохранились в неизменном или переосмысленном виде во многих философско-методологических учениях XIX и XX вв. теоретической «нагруженности» любого эксперимента, принци­пах верификации и фальсификации, учениях о пределах научного познания в связи с проблемами взаимодействия исследуемых и ис­следующих (человек с его макроскопическими инструментами и по­нятиями) систем, учениях об идеалах и нормах научного познания Кант твердо стоял на позиции, что статус естественнонаучного зна­ния может приобретать не любое знание а рriori, но обязательно в пределах возможного опыта, т е знание, которое может быть под­тверждено или опровергнуто при эмпирической (эксперименталь­ной) проверке. Наконец, идеи Канта о том, что понятие «природа» есть понятие, включающее не вещи сами по себе, а вещи возможно­го человеческого опыта, нашли своеобразное, но вполне созвучное продолжение в копенгагеновской интерпретации квантовой механи­ки, утверждение природной принципиально неустранимой взаимо­связи познаваемой системы и познающей системы.

Существенный вклад Канта в становление методологии на­учного познания в том, что он строго разделил научно-критическую конститутивную и метафизическую регулятивную части человеческого познания. В метафизической традиции от учения о «припоминании» Платона до «врожденных идей» Де­карта собственно научно-критическому познанию природы «в пределах возможного опыта» места не было. Идеи Канта соста­вили основу синтеза естествознания, основанного на опыте и философской теории познания как науки.

Заключим этот раздел интересными и вполне актуальными (все­гда актуальными) размышлениями Канта о соотношении теории и практики. Он дает следующие определения понятиям «теория» и «практика»: «Теорией называют совокупность правил, даже практи­ческих, когда эти правила мыслятся как принципы в некоторой все­общности, и притом отвлеченно от множества условий, которые, однако, необходимо влияют на их применение. Наоборот, практикой называется не всякое действование, а лишь такое осуществление це­ли, какое мыслится как следование определенным, представленным в общем виде принципам деятельности». Далее Кант ясно и с привлечением наглядных примеров поясняет, что вся­кая практика, если она только не сводится к невежественному дей­ствию наугад, обязательно основывается на теории, т.е совокупно­сти правил и принципов. В связи с этим он замечает, что «причина малой •пригодности теории для практики (если это имело) заключалась не в самой теории, а в том, что здесь было недос­таточно теории, которой человек должен был еще научиться из опы­та и которая есть истинная теория..» 0

Можно уверенно сказать, что Кант, раскрывая необходимую не­разрывность теории и практики, исчерпал итоги многих дискуссий о соотношении теории и практики, воспроизводящихся без особых вариаций и без оригинальных итогов вплоть до нашего времени.

В заключение можно отметить, что методология науки строится подобно аксиоматическому способу построения теорий в математике. В начале ученый на основании каких-либо сооб­ражений выбирает «аксиоматическую систему» - в данном слу­чае принципиальные основания познавательного метода, а далее строит всю систему методологии. Так, например, у Бэкона «общие аксиомы» находится в эмпирических знаниях, у Декарта - в интеллекте познающего субъекта, у Канта - в «чистом разуме» и «априорных формах чувственности».


§ 2. Становление идеи развития и принципа историзма в философии и естествознани.

В дополнение и развитие к учению Канта о границах научного познания в период XV-XIX вв. в арсенал естественнонаучного и философского знания вошли идеи развития и принцип историзма.

Надо сказать, что идея развития и принцип историзма развива­лись в естествознании и философии достаточно автономно, более того, можно говорить о первенстве естествознания XVII-XX вв. в разработке идеи развития и ее влиянии на философскую мысль. Действительно, в указанный период идея развития в философской области разрабатывалась немногими философами. Проблемы разви­тия в идеальной сфере, сфере духа получили своеобразное выраже­ние в философских системах Фихте, Шеллинга, Гегеля. Так, у Фихте концепция развития относилась исключительно к самосознанию, ра­зуму, «Я», где, как отмечается, «изменение природных явлений представляет лишь слабый отблеск духовного развития». В панлогизме Гегеля идеи развития, конечно, относятся к природе, но в специфическом ее понимании как деятельности аб­солютного духа, выраженной главным образом в самодвижении ло­гических категорий0. В целом эти кон­цепции были далеки от естественнонаучной мысли своего времени и, если и оказывали на нее влияние, то косвенно через духовно-культурную атмосферу.

Что касается химии, то идеи развития отсутствовали в ней до второй половины XX века. Представления о возможной химиче­ской (предбиологической, молекулярной) эволюции как новой предметной области химии зародились на рубеже XIX-XX вв. в связи с логической необходимостью объяснить связанность между фи­зическими космогоническими и биологическими эволюционными учениями, т е. с теориями-гипотезами Канта-Лапласа, Ламарка, Дар­вина и др. То есть в XIX в. в результате взаимосвязи физического космогонического и биологического эволюционного знаний в химии опыта обозначена новая предметная область проблемы эволюции вещества как этапа в истории Вселенной от неорганических косми­ческих тел до возникновения жизни.

Эволюционные идеи в химии впервые возникли под влиянием космогонических гипотез в несколько большей степени, чем под влиянием эволюционного учения в биологии. Поэтому в первую очередь в химии (и геохимии) прозвучали идеи о неорганической эволюции и образовании химических элементов в космических условиях В частности, такие идеи в 70-х годах XX в. сформулировал Локьер. Позднее в 80-х годах В. Крукс высказал мысли об эволюции химических элементов в речи: «О происхождении химических элементов» (1886 г.). Собственно термин «химическая эволюция», обозначающий именно эволюцию атомно-молекулярных систем в естественно-исюрических условиях, был введен Муром в 1913 г0.

В результате на рубеже XIX-XX вв. в естествознании сформи­ровалась стройная система эволюционных процессов в природе на уровне космических тел и образований (небулярная гипотеза Канта-Лапласа), на молекулярном уровне (теории химической, или моле­кулярной предбиологической эволюции), и эволюционные учения в биологии (дарвинизм). К этому же времени идея развития и позна­вательный принцип историзма утвердились в философско-методологическом знании. Это произошло в результате взаимодей­ствия эволюционных учений в естествознании и диалектических идей развития в немецкой классической философии с последующим своеобразным их переосмыслением в сфере диалектического мате­риализма.

С другой стороны, в науке XIX в. синтез конкретного естество­знания и логики послужил опорой для философии позитивизма, центральными проблемами которой стали вопросы эмпирического обоснования научного знания с опорой на аппарат логики и анализ языка науки. Как известно, эта тенденция связана с зарождением в XIX в философии позитивизма в работах О. Конта, Дж. С. Милля и их последователей. Мы не будем подробно анализировать обшир­ный материал, представленный работами позитивистов и неопози­тивистов XIX и XX вв. по разработке аппарата логики и лингвисти­ки науки, а выскажем некоторые соображения о проблемах взаимо­отношений формальной логики и методологии научного познания без «хитросплетений» и «изысков» логических и лингвистических работ философов науки позитивистского направления.


§ 3. Современная технология познания мира эвристика и методология науки

Перейдем от изложения методологии в историческом ракурсе к изложению ее актуального состояния. Конечно, все сказанное выше не есть обзор исторически любопытных эпизодов, а есть становле­ние основ логики, методологии и философии науки, которые оста­ются основами актуальной, те современной, методологии. По­скольку речь идет о фундаментальных положениях методологии науки, есть все основания утверждать об их непреходящей значимо­сти.

Предварительно еще раз (и не в последний раз!) заметим, что создать алгоритм (логику, технологию, рецептуру) получения нового знания принципиально невозможно. Поэтому все пере­численные ниже принципы могут рассматриваться только как на­правления научного поиска из сферы возможного, но не необходимого

Вся история науки свидетельствует о том, что никто не смог на­чертать путей открытий нового гениям и талантам, но сколько крови было пролито в прямом и переносном смысле (трагедии личных су­деб мыслителей, трагедии научных идей) из-за их неприятия «уче­ными-обывателями», т.е. к адептама традиционных направлений и сложившихся знаний.

Для принципиально нового знания, то есть знания логиче­ски невыводимого путем дедукций и систематизации из извест­ного знания, характерны две особенности начальных этапов становления: случайность открытия (в смысле отсутствия спе­циальной программы этого открытия) и непризнание в научном сообществе. В истории научных открытий практически не исклю­чений, где такие особенности отсутствовали бы. Приведем некото­рые примеры, перечень которых можно продолжать и продолжать.

Вначале рассмотрим примеры из области «случайных)) (непред­намеренных) открытий.

Под случайностью открытия мы имеем в виду принципиальную его неожиданность и незапланированность пути к нему. Что же ка­сается общих тенденций и закономерностей становления научного знания, то здесь есть элемент необходимости. Во всяком случае, от­крытия совершают исследователи-ученые, а не пирожники и сапож­ники. Как остроумно заметил немецкий психолог Г. Мюнстерберг: «В мире было много гальванических эффектов и до того, как Гальвани случайно увидел, как сокращается лапка лягушки, лежащая на металлическом проводе. Мир всегда полон подобных случайностей, но в нем редко встречаются такие люди, как Гальвани и Рентген» 0. В этом же смысле высказывал­ся Л. Пастера: «Случай помогает только тем, чей ум созрел для это­го» (цитировано по [Гурвич, 1981, с. 23]). Многие видели падающие яблоки, но не сформулировали закона всемирного тяготения, многие видели скрученных змей и наяву и во сне, но не открыли структуры молекулы бензола.

Случайность открытия (в обозначенном смысле) видна из при­зеров открытий Гальвани (краткое описание ситуации уже дано) и Рентгена (было обнаружено почернение закрытой от света фотопла­стинки при случайном ее контакте с радиоактивным источником). Но, кроме этих хрестоматийных примеров, мы можем привести столько, сколько, пожалуй, открыто принципиально новых явлении природы.

Так, исходной задачей Кулона было не измерение силы притя­жения электрических зарядов, а реализация совершенно ивой про­граммы Гука, в рамках которой Кулон под изобретенные им высо­кочувствительные крутильные весы искал задачи.

«Излучение Черенкова-Вавилова» было открыто в 1934 г. при постановке и решении рядовых вопросов люминесценции жидко­стей, а отнюдь не в связи с программой открытия светового излучения заряженных частиц, движущихся в среде со скоростью, превышающей фазовую скорость света в этой среде.

При исследовании бета-распада в 1934 г. Паули был вынужден для спасения закона сохранения энергии ввести гипотетическую частицу «нейтрино», которую экспериментально обнаружить уда­лось много позднее. И в данном случае в программу исследований Паули не входил поиск такой частицы, как нейтрино.

Флеминг увидел, что микроорганизмы не растут вблизи пени­циллина, и открыл первый антибиотик. Его заслуга здесь в том, что он смог увидеть то новое, чего специально не искал.

Таким образом, надо быть Архимедом, чтобы выскочить из ван­ной с криком «Эврика» и открыть закон действия сил на тело, по­груженное в жидкость; надо быть Галилеем, чтобы при наблюдении раскачивающейся лампы в соборе в Пизе озариться интуицией и сформулировать закон колебаний маятника; надо быть Ньютоном, чтобы при виде падающего яблока утвердиться в законе всемирного тяготения; надо быть Гальвани, чтобы от единичного случая сокра­щения лапки препарированной лягушки при ее контакте с металли­ческим телом прийти к идее нового электрохимического источника тока; надо быть Майером, чтобы при наблюдении изменения цвета венозной крови в тропиках (во время его путешествия на корабле) прийти к всеобщему закону сохранения и превращения энергии; на­до быть Кекуле, чтобы, увидев во сне свернувшуюся змею, прийти к открытию строения молекулы бензола; нужно быть Менделеевым, чтобы при систематизации материала во время подготовки учебника «Основы химии» прийти к формулировке периодического закона химических элементов; надо быть Пуанкаре, чтобы после чашки кофе и бессонницы прийти к открытию класса «автоморфных функций»; нужно быть Флемингом, чтобы, увидев задержку роста культуры микроорганизмов, прийти к открытию антибиотика пенициллина - и т.д., пока не перечислим имена всех великих первооткры­вателей.

В связи с вопросом о соотношении случайности и необходимо­сти при совершении принципиально новых открытий известный американский кардиолог Дж. Лара заметил: «Чаще всего удачу ис­следователя приписывают случаю или ситуации, чем уму. Отчасти это происходит от того, что не все можно объяснить словами, и ко­гда сделавший открытие ученый не способен объяснить, как он сде­лал открытие, то его ошибочно считают просто удачливым. На са­мом же деле открытие почти никогда не является удачей, случайно­стью потому что те исследователи, которые делают одно открытие, обычно делают еще одно, два и более открытий. Очевидно, главным требованием для исследователя является определенное сомнение в авторитетах и установленных доктринах. Многие не способны к по­добному восстанию против установившихся истин» 0.

Кроме того, нередки случаи, когда даже при наличии рабочей гипотезы ее подтверждение происходит благодаря случаю. Так, в 1927 г. К. Девиссон и Л. Джермер обнаружили дифракцию электро­нов, т.е. подтвердили гипотезу де Бройля о волновой природе элек­тронов, создав дифракционную решетку на монокристаллах никеля. Эти монокристаллы ученые получили благодаря тому, что у них случайно разбилась азотная ловушка и окислилась никелевая пла­стинка, восстанавливая которую ученые неожиданно увидели круп­ные монокристаллы никеля (см. об этом, например (Овчинников, 1972, с. 24-25]).

В 1965 г. А. Пензиас и Р. Вилсон зарегистрировали микроволно­вым приемником постоянный «паразитный» фон. В начале они ду­мали, что причиной является голубиное гнездо на антенне, но, когда они удалили голубей с гнездом, фон сохранился. Так было обнару­жено предсказанное Г. Гамовым реликтовое излучение, которое об­разовалось во время зарождения Вселенной. Обнаружение этого из­лучения принесло названным экспериментаторам Нобелевскую премию по физике.

Дополнительно отметим, что надо, конечно, особо различать ошибочные открытия. Например, из опытов взвешивания веществ после прокаливания и наблюдаемого увеличения их веса Р. Бойль сделал открытие что «огонь имеет вес». Открытие флогистона, в свою очередь, было связано с наблюдаемой потерей веса веществ при их горении, что объяснялось наличием в них летучего флоги­стона.

Характеристики

Тип файла
Документ
Размер
4 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6499
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее