151599 (598944), страница 5

Файл №598944 151599 (Ферромагнитные жидкости) 5 страница151599 (598944) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

(Определение должно производиться путем экстраполяции зависимости в область низких температур). В таблице 3.3? приведены результаты расчета для МЖ с различным объемным содержанием дисперсной фазы по температурной зависимости ( ) и по ее концентрационной зависимости с помощью формулы (3.18?), . Для расчета выбирался температурный интервал , который соответствует температурам, при которых были проведены концентрационные исследования магнитной восприимчивости. При этом, как уже указывалось выше, при определении осуществлялся учет теплового расширения дисперсионной среды, для чего экспериментальные зависимости перестраивались с учетом изменения магнитной восприимчивости за счет изменения концентрации при тепловом расширении. Указанное изменение магнитной восприимчивости определялось с помощью концентрационных зависимостей этого параметра, полученных в соответствующем температурном интервале. Как видно из представленной таблицы более удовлетворительное согласие между и выполняется в области высоких концентраций, где магнитную жидкость можно считать подобной гомогенной среде. Так как, а области температур около наблюдается изменение угла наклона зависимости , то формальное использование для расчета напряженности эффективного поля формулы ( ) дает ее скачкообразное изменение в области указанной температуры.

Таким образом, расчеты эффективного поля показали, что не остается постоянным в исследованном концентрационном интервале. Расчетные значения изменяются также при понижении температуры до некоторого ее значения. Можно предположить, что это связано с изменением структурного состояния магнитного коллоида при понижении его температуры и в процессе приготовления образцов промежуточной концентрации. Вместе с тем, следует отметить, что отклонение от теории Лоренц-Лоренца непосредственно связано также с повышающейся ролью локальных полей при понижении температуры и увеличении концентрации. Согласно [61 М Д], в дипольных жидкостях диполь испытывает со стороны соседних диполей ориентационное воздействие как при существовании намагничивающего поля, так и при его отсутствии. В результате этого, вращательное движение диполя сводится к вращательным качаниям около некоторой равновесной ориентации. Поворот равновесной ориентации, определяемой локальным полем в сторону намагничивающего (эффективного) поля в значительной мере зависит от соотношения численных значений намагничивающего и локального полей. При этом, новая равновесная ориентация совпадает с направлением результирующего поля. Таким образом, локальное поле, препятствует ориентации моментов частиц по намагничивающему полю, что фактически означает уменьшение эффективного поля. Развитие теории поляризации жидких диэлектриков на основе использования идеи локального поля предпринималось Дебаем, Л.И.Френкелем, А.И. Губановым и др. [61 МД], однако даже в этом случае не удалось полностью избавиться от противоречий, возникающих при применении теории Лоренц-Лоренца для вычисления поляризации и диэлектрической проницаемости дипольных жидкостей. Магнитные жидкости являются более сложным объектом с полидисперсными частицами, способными под воздействия поля или других факторов, связанных с их коллоидным состоянием, образовывать сложные магнито-структурные связи, оказывающие существенное влияние на процессы намагничивания таких систем. Поэтому, применение какой-либо существующей или создание новой теории намагничивания магнитных жидкостей представляет существенные трудности. Тем не менее, такие попытки неоднократно предпринимались в ряде работ, анализ большинства которых проведен А.Ф.Пшеничниковым и А.В. Лебедевым в [?]. В качестве приоритетных теоретических моделей ими были выделены среднесферическое приближение [19], теория возмущений [20], разложение Борна-Майера [21, 22], модифицированный вариант среднего поля [11, 23]. Во всех этих теориях предполагается, что равновесная намагниченность магнитной коллоидной системы является функцией ланжевеновской намагниченности и ее производных. В этом случае, магнитная восприимчивость концентрированного коллоида может быть представлена в виде ряда по степеням ланжевеновской восприимчивости :

(1)

По утверждению авторов работы [?], в общем случае начальная восприимчивость системы сферических диполей определяется двумя независимыми безразмерными параметрами: объемной долей частиц и параметром агрегирования ( - диаметр коллоидной частицы вместе с защитной оболочкой). При этом, ими представляется в виде: , на основании чего делается ошибочный вывод, что параметр и ланжевеновская восприимчивость имеют одинаковый смысл отношения энергии диполь-дипольных взаимодействий к тепловой. По их мнению, разность лишь заключается в том, что в первом случае энергия взаимодействий вычисляется при минимальном расстоянии между центрами частиц, равном их диаметру, во втором – по среднему расстоянию, т.е. через числовую плотность . Далее утверждается, что при малых значениях количество агрегатов в магнитной жидкости невелико, и они не влияют на намагниченность системы. В этом случае ланжевеновская восприимчивость оказывается единственным безразмерным параметром, определяющим степень влияния магнитодипольных взаимодействий на равновесную намагниченность системы, что и отражает формула (). Второе и третье слагаемые в этой формуле, по мнению авторов в этой формуле учитывают относительный вклад межчастичных взаимодействий в равновесную восприимчивость. Вместе с тем, следует заметить, что выражение для ланжевеновской магнитной восприимчивости получено в случае пренебрежения межчастичными взаимодействиями и на самом деле она может иметь только один смысл - отношения собственной (магнитостатической) энергии ансамбля однодоменных частиц к тепловой энергии. Действительно, магнитостатическая энергия сферической, однородно намагниченной частицы равна произведению ее магнитного момента на собственное размагничивающее поле, равное - , где - размагничивающий фактор сферической частицы. Таким образом, по абсолютной величине магнитостатическая энергия сферической частицы равна . Так как = , то , и с учетом этого нетрудно получить

,

где - объемная концентрация магнитной фазы.

Следует отметить, что, тем не менее, в современных аналитических моделях, описывающих свойства дипольных систем с учетом магнитодипольных и стерических взаимодействий в качестве определяющих параметров достаточно часто используют и . Представляя коллоидные частицы твердыми или “мягкими” сферическими диполями энергию их магнитодипольного взаимодействия определяют выражением

,

где - единичный вектор вдоль магнитного момента частицы, - радиус-вектор, соединяющий центры частиц, отнесенный к диаметру частицы, определяется выражением, аналогичным использованному в [], т.е. , за исключением того, что в последнем выражении является диаметром равномерно намагниченной сферы, а не диаметром сферической частицы вместе с защитной оболочкой. Выражение для восприимчивости ищут в виде ряда по степеням и или и , используя различные приемы для отыскания коэффициентов при соответствующих членах разложения. В работах Хуке и Люке [21,22] представлено разложение намагниченности по параметру . Выражение для магнитной восприимчивости, согласно полученным ими результатов может быть представлено в виде

. (2)

Проведенные расчеты коэффициента , учитывающего парные взаимодействия и образование агрегатов из двух частиц дали следующее выражение:

Сравнение (1) и (2) показывает их различие, по крайней мере в пределе малых концентраций выражение (2) не переходит в уравнение (1).

В работах Каликманова [24,25] была предпринята попытка уточнения коэффициента перед третьим слагаемым в правой части (1) в случае магнитной жидкости с высокой концентрацией магнитной фазы. В работе [], результат, полученный Каликмановым с целью сравнения с (1) был представлен в виде

(3)

,

В пределе малых концентраций множитель стремится к единице, и уравнение (3) переходит в (1). Поправка на высокую плотность оказывается существенной для высококонцентрированных жидкостей, например для предельно концентрированных коллоидов коэффициент увеличивается почти на порядок.

Ивановым А.О. и Кузнецовой О.Б. получено уточненное выражение для восприимчивости [], сходное с формулой (1), но содержащее в правой части слагаемые порядка и :

.

Пшеничниковым А.Ф. и Лебедевым А.В. введены поправки в разложение (1) (исскуственным образом) на агрегирование частиц и высокую плотность коллоидных частиц . В результате ими предложено выражение для магнитной восприимчивости в виде:

Сравнение формул, отражающих рассмотренные модели с экспериментальными данными проводилось в []. Анализ результатов этой работы позволяет сделать вывод о необходимости осторожности использования предложенных разложений, так как каждое из них удовлетворительно согласуется с результатами экспериментов только в определенных интервалах температур и концентраций дисперсной фазы. Следует также заметить, что все обсужденные модели разработаны для монодисперсной системы, в случае же полидисперсной среды, их применение становится затруднительным. Это связано с тем, что в этом случае определение параметра становится некорректным, кроме того, представление ланжевеновской восприимчивости в виде , являющееся формальным даже в случае монодисперсной среды (квадрат момента частицы заменяется произведением равных моментов двух разных частиц) становится невозможным, так как моменты этих частиц начинают различаться. Очевидно, что все эти затруднения могут быть преодолены в случае отыскания разложения для равновесной намагниченности в виде ряда по параметрам, определяющим магнитостатическую энергию частицы и объемную концентрацию магнитной фазы. Учет взаимодействия частиц в этом случае может быть охарактеризован изменением магнитостатической энергии частицы за счет полей соседних частиц, а при полидисперсности системы никаких сложностей с введением средней магнитостатической энергии частицы не возникает.

Глава 2. Структурная организация магнитных жидкостей и обусловленные ею электро- и магнитооптические эффекты

Характеристики

Тип файла
Документ
Размер
34,76 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее