151281 (598926), страница 5
Текст из файла (страница 5)
(66)
здесь z – разность отметок уровня воды в подпиточном баке и оси подпиточных насосов.
Подача подпиточных насосов
а). в закрытых системах теплоснабжения принимается равной расчетному расходу воды на компенсацию утечки из тепловой сети
:
(67)
б). в открытых системах - равной сумме максимального расхода воды на горячее водоснабжение
и расчетного расхода воды на компенсацию утечки
:
(68)
Расчетный расход воды на компенсацию утечки
, принимается в размере 0,75% от объема воды в системе теплоснабжения, аварийный расход на компенсацию утечки принимается в размере 2% от объема воды в системе теплоснабжения. Объем воды в системе теплоснабжения допускается принимать равным 65 м3 на 1 МВт расчетного теплового потока при закрытой системе теплоснабжения и 70 м3 на 1 МВт - при открытой системе теплоснабжения.
Число параллельно включенных подпиточных насосов
а). в закрытых системах теплоснабжения не менее двух, один из которых является резервным;
б). в открытых системах не менее трех, один из которых также является резервным.
Технические данные насосов для систем теплоснабжения приведены в приложениях №21 и №22. При подборе насосов следует учитывать требования по максимальной температуре воды, по величине допускаемых напоров на всасывающем патрубке насоса. Из условий экономии потребления электроэнергии величина КПД насоса
, не должна быть менее 90% от величины максимального КПД
.
Указание моделей и количества сетевых и подпиточных насосов произвести в разделе №12.
8. Расчет толщины тепловой изоляции
Расчет толщины тепловой изоляции трубопроводов к по нормированной плотности теплового потока выполняют по формуле:
(69)
где d - наружный диаметр трубопровода, м;
е - основание натурального логарифма;
к - теплопроводность теплоизоляционного слоя, Вт/(м ·°С), (определяемая по приложению №15 и №24);
Rк - термическое сопротивление слоя изоляции, м ·°С/Вт, величину которого определяют в зависимости от способа прокладки трубопровода по следующим выражениям:
При надземной прокладке (также прокладке в тоннелях и техподпольях):
(70)
При подземной прокладке
канальная прокладка
(71)
бесканальная прокладка
(72)
где
- нормированная линейная плотность теплового потока, Вт/м (принимается по приложению 16);
- средняя за период эксплуатации температура теплоносителя (при параметрах теплоносителя 150/90 принимается для подающего трубопровода 90
С, для обратного 50
С);
- среднегодовая температура окружающей среды (определяется по приложению №18 в зависимости от вида прокладки трубопровода);
- коэффициент, принимаемый по приложению №19.
- термическое сопротивление поверхности изоляционного слоя, м·°С /Вт, определяемое по формуле:
(73)
здесь
- коэффициент теплоотдачи с поверхности тепловой изоляции в окружающий воздух (при прокладке в каналах
= 8; при прокладке в техподпольях и тоннелях
= 11 , при надземной прокладке
= 29) ;
d – наружный диаметр трубопровода, м;
- термическое сопротивление поверхности канала, определяемое по формуле:
(74)
здесь
- коэффициент теплоотдачи от воздуха к внутренней поверхности канала (
= 8 Вт/(м² ·°С));
F - внутреннее сечение канала, м2;
P - периметр сторон по внутренним размерам, м;
- термическое сопротивление стенки канала, определяемое по формуле:
, (75)
здесь
- теплопроводность стенки канала (для железобетона
= 2,04 Вт/(м·°С));
- наружный эквивалентный диаметр канала, определяемый по наружным размерам канала, м;
- термическое сопротивление грунта, определяемое по формуле:
, (76)
здесь
- теплопроводность грунта, зависящая от его структуры и влажности (при отсутствии данных его значение можно принимать для влажных грунтов
= 2-2,5 Вт/(м·°С), для сухих грунтов
= 1,0-1,5 Вт/(м·°С));
h - глубина заложения оси теплопровода от поверхности земли, м;
- добавочное термическое сопротивление, учитывающее взаимное влияние труб при бесканальной прокладке, величину которого определяют по формулам:
-
для подающего трубопровода
(77)
-
для обратного трубопровода
(78)
где h - глубина заложения осей трубопроводов, м;
b - расстояние между осями трубопроводов, м, принимаемое в зависимости от их диаметров условного прохода по данной таблице:
Таблица №3. Расстояние между осями трубопроводов
| dу, мм | 50-80 | 100 | 125-150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 700 |
| b, мм | 350 | 400 | 500 | 550 | 600 | 650 | 700 | 600 | 900 | 1000 | 1300 | 1400 |
,
- коэффициенты, учитывающие взаимное влияние температурных полей соседних теплопроводов, определяемые по формулам:
(79)
(80)
здесь
,
- нормированные линейные плотности тепловых потоков соответственно для подающего и обратного трубопроводов, Вт/м.
9. Расчет и подбор компенсаторов
В тепловых сетях широко применяются сальниковые, П - образные и сильфонные (волнистые) компенсаторы. Компенсаторы должны иметь достаточную компенсирующую способность
для восприятия температурного удлинения участка трубопровода между неподвижными опорами, при этом максимальные напряжения в радиальных компенсаторах не должны превышать допускаемых (обычно 110 МПа).
Тепловое удлинение расчетного участка трубопровода
, мм, определяют по формуле:
(81)
где
- средний коэффициент линейного расширения стали,
(для типовых расчетов можно принять
),
- расчетный перепад температур, определяемый по формуле
(82)
где
- расчетная температура теплоносителя, оС;
- расчетная температура наружного воздуха для проектирования отопления, оС;
L - расстояние между неподвижными опорами, м (см. приложение №17).
Компенсирующую способность сальниковых компенсаторов уменьшают на величину запаса - 50 мм.
Реакция сальникового компенсатора - сила трения в сальниковой набивке
определяется по формуле:
(83)
где
- рабочее давление теплоносителя, МПа;
- длина слоя набивки по оси сальникового компенсатора, мм;
- наружный диаметр патрубка сальникового компенсатора, м;
- коэффициент трения набивки о металл, принимается равным 0,15.
При подборе компенсаторов их компенсирующая способность и технические параметры могут быть определены по приложению.
Осевая реакция сильфонных компенсаторов
складывается из двух слагаемых:
(84)
где
- осевая реакция, вызываемая деформацией волн, определяемая по формуле:
(85)
здесь l - температурное удлинение участка трубопровода, м;
- жесткость волны, Н/м, принимаемая по паспорту компенсатора;
n - количество волн (линз).
- осевая реакция от внутреннего давления, определяемая по формуле:
(86)
здесь
- коэффициент, зависящий от геометрических размеров и толщины стенки волны, равный в среднем 0.5 - 0.6;
D и d – соответственно наружный и внутренний диаметры волн, м;
- избыточное давление теплоносителя, Па.
При расчете самокомпенсации основной задачей является определение максимального напряжения у основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90о по
формуле:
(87)
для углов более 90о, т.е. 90+, по формуле
(88)
где l - удлинение короткого плеча, м;
l - длина короткого плеча, м;
Е - модуль продольной упругости, равный в среднем для стали 2· 105 МПа;
d - наружный диаметр трубы, м;
- отношение длины длинного плеча к длине короткого.
При расчетах углов на самокомпенсацию величина максимального напряжения не должна превышать [] = 80 МПа.
При расстановке неподвижных опор на углах поворотов, используемых для самокомпенсации, необходимо учитывать, что сумма длин плеч угла между опорами не должна быть более 60% от предельного расстояния для прямолинейных участков. Следует учитывать также, что максимальный угол поворота, используемый для самокомпенсации, не должен превышать 130о.
10. Расчет усилий на опоры
Вертикальную нормативную нагрузку на подвижную опору Fv, Н, определяют по формуле:
(89)
где
- масса одного метра трубопровода в рабочем состоянии включающий вес трубы, теплоизоляционной конструкции и воды, Н/м;
L - пролет между подвижными опорами, м.
Величина
для труб с наружным диаметром
может быть принята по табл. 4 методического пособия:
Таблица №4 – Масса 1 м трубопровода в рабочем состоянии
|
| 38 | 45 | 57 | 76 | 89 | 108 | 133 | 159 | 194 | 219 | 273 | 325 | |||||||||||
|
| 69 | 81 | 128 | 170 | 215 | 283 | 399 | 513 | 676 | 860 | 1241 | 1670 | |||||||||||
|
| 377 | 426 | 480 | 530 | 630 | 720 | 820 | 920 | 1020 | 1220 | 1420 | ||||||||||||
|
| 2226 | 2482 | 3009 | 3611 | 4786 | 6230 | 7735 | 9704 | 11767 | 16177 | 22134 | ||||||||||||
Пролеты между подвижными опорами в зависимости от условий прокладки и типов компенсаторов приведены в таблицах 5, 6 методического пособия.















