144567 (598813), страница 9
Текст из файла (страница 9)
Мал.9.3. Схема безперервного вагового дозування: 1 - диск з лопатями; 2 - електродвигун; 3 - редуктор з вимірювальним пристроєм; 4 - блок датчиків; 5 - корпус; 6 - труба живляча; 7 - зливна труба; 8 - вал приводний.
Мал.9.4. Схема вагового дозування з використанням дискового живильника: 1 - стрічковий вагозвішувальний конвеєр; 2 - регулятор електронний; 3 - датчик індукційний; 4 - прилад інтегруючий; 5 - виконавчий механізм; би - диск (тарілка); 7 – бункер; 8 - привід диска; 9 - задатчик; 10 - ніж.
Шлам або сипкий матеріал поступає на диск з лопатями при вільному закінченні з живлячої труби або тічки. Лопаті диска, витягуючи матеріал, повідомляють йому тангенціальну швидкість. При цьому на валу диска створюється гальмівний момент, визначуваний зусиллям, затрачуваним на додання матеріалу тангенціальної швидкості. Гальмівний момент пропорційний кутовій швидкості чутливого елемента (диска з лопатями), квадрату його радіусу і ваговій витраті матеріалу, що проходить через чутливий елемент в одиницю часу, і обернено пропорційний прискоренню сили тяжіння. Момент перетвориться механічною системою вимірювального пристрою в переміщення плунжера індукційного датчика, який з'єднується з показуючим, реєструючим і інтегруючим вторинними приладами.
На мал.9.4 показана схема вагового безперервного дозування з використанням дискових (тарілчатих) живильників [2]. Матеріал (вапняк, добавки, гіпс, клінкер і ін) поступає з бункера (силосу) великої місткості на стрічковий вагозвішувач з дискового (тарілчатого) живильника і не випробовує тиск стовпа матеріалу. Цей спосіб дозування дозволяє використовувати переваги дискового живильника як одного з найефективніших розвантажувальних пристроїв для силосів (бункерів) великої місткості, забезпечуючого надійне розвантаження матеріалу, а також переваги вагового обліку і дозування.
Сигнал вагової витрати, вимірюваного стрічковим вагозвішувач 1, перетворений індукційним датчиком 3, поступає на вхід електронного регулятора 2 і на показуючий, реєструючий і інтегруючий електронний прилад 4. При відхиленні вагової витрати від заданого електронний регулятор 2 через виконавчий механізм 5 впливає на зміну швидкості обертання диска живильника і тим самим приводить до зміни інтенсивності закінчення матеріалу з силосу (бункери) до тих пір, поки відхилення не зникне і вагова витрата не стане рівною заданому.
Дисковий (тарілчатий) живильник має привід постійного або змінного струму. Вживання електродвигуна змінного струму підвищує надійність і економічні показники.
Для вимірювання малих витрат матеріалів (наприклад, ПАВ, вода, добавки і ін), що подаються в цементні трубні млини, використовують дифманометри, що відносяться до приладів постійного перепаду тиску [1, 30, 94]. Дифманометри, передбачені для вимірювання перепадів тиску на різних типах звужуючих пристроїв, одним словом, пневмометричних трубках, можуть бути або показуючими з інтеграторами або без них, або бесшкальними датчиками з індуктивним або диференціально-трансформаторним дистанційним зв'язком з вторинними приладами.
Погрішність дозування - це відхилення маси або об'єму дози матеріалу від її заданої (що вимагається) величини [1,4,5].
Абсолютна погрішність дозування визначається з виразів:
(9.2)
(9.3)
Відносна погрішність дозування - це відношення абсолютної погрішності до заданої (що вимагається) величини дози
(9.4)
(9.5)
В табл.9.1 і 9.2 приведені основні параметри циклічного і безперервного дозування при виробництві бетону і розчину.
Тривалість зважування дози (порції) матеріалу при дискретному дозуванні визначається з виразу [94]
де Мтах - максимальна маса дози матеріалу, кг; Qmp - необхідна продуктивність живильника по заповненню бункера дозатора, т/ч.
Таблиця 9.1.
Параметри циклічного дозування при виробництві бетонів і розчинів
Матеріал | Межа зважування, кг | Цикл дозування | Погрішність дозування% | Клас точності | |||||
Якнайменший | Найбільший | ||||||||
Цемент | 20 | 100 | 60 | 2 | 2 | ||||
Цемент | 40 | 200 | 30 | 1 | 1 | ||||
Цемент | 100 | 500 | 60 | 2 | 2 | ||||
Вода | 40 | 200 | 60 | 2 | 2 | ||||
Пісок | 100 | 500 | 30 | 2 | 2 | ||||
Щебінь | 200 | 800 | 45 | 2 | 2 | ||||
Щебінь | 400 | 1600 | 45 | 2 | 2 | ||||
Керамзит | 250 | 1300 | 90 | 3 | 3 |
Таблиця 9.2.
Параметри безперервного дозування при виробництві бетонів і розчинів
Матеріал | Найбільша крупна, мм | Продуктивність т/ч | Клас точності |
Цемент | - | 4-25 | 1 |
Цемент | - | 25-100 | 1 |
Щебінь | 40 | 8-40 | 2,5 |
Щебінь | 70 | 5-50 | 2,5 |
Щебінь | 100 | 10-100 | 2 |
Тривалість циклу дозування
(9.7)
де tвыгр - тривалість вивантаження матеріалу з вагового бункера, с; tавт - тривалість спрацьовування елементів системи автоматики tавт = 1,5 - 2 с.
Швидкість закінчення матеріалу з бункера дозатора
(9.8)
де λ - коефіцієнт закінчення λ = 0,4 - 0,5; q - прискорення сили тяжіння, м/с2; R - гідравлічний радіус отвору закінчення, м.
В роботі [4] швидкість закінчення матеріалу рекомендується визначати по формулі
(9.9)
де QM - задана масова витрата матеріалу при закінченні; F0 - площа отвори закінчення; ρч - густина частинки матеріалу; ε - порозність сипкого матеріалу (порошку) ε= (ρч - ρм) / ρч, ε ≈ 0,6; ρм - густина матеріалу.
Виходячи з допустимої абсолютної погрішності ΔМа6с дозування (для мінімальної дози) і мінімальної необхідної подачі (продуктивності) матеріалу Qmp, можна розрахувати режим завантаження матеріалу у ваговий бункер дозатора.
Спочатку визначають QM, відповідне значенню ΔМабс, і порівнюють його із знайденим Qmp. Якщо Qmp ≤ QM, то ваговий бункер завантажують на одному режимі (одностадійне дозування), а площа F0 закінчення береться з технічної характеристики бункерів (силосів) для заданого значення QM. У разі Qmp > Qm ваговий бункер дозатора завантажуються малими дозами, при Qmp = Qm бункер завантажується великими дозами - спочатку при повністю відкритій заслінці, а потім при частково закритій заслінці, тобто при площі F0, відповідній даному значенню ΔМабс. В цьому випадку первинна, так звана груба засипка ведеться з подачею, що розраховується по формулі
(9.10)
де Мо - маса дози, кг; МД - маса дози при досипанні, кг; tД - тривалість завантаження бункера при досипанні матеріалу, с.
(9.11)
Для забезпечення високої точності дозування приймально-витратний бункер повинен обладнуватись аераційним, вібраційним і іншими струшуючими пристроями і механізмом регулювання швидкості закінчення матеріалу, сприяючим забезпечити стабільне і рівномірне завантаження вагового бункера дозатора.
3.2. Засипка прес-форм формувальною сумішшю
При напівсухому пресуванні формувальних будівельних сумішей засипка прес-форм є складним технологічним процесом, що полягає в загальному випадку в закінченні дискретного сипкого середовища і заповнення нею замкнутого простору у вигляді прес-форми. Зв'язок засипки прес-форм з якістю одержаних при формуванні виробів виявляється в наступному. По-перше, при пресуванні до заданого тиску (наприклад, на гідравлічних пресах з гідравлічним обмежувачем тиску) зміна кількості формувальної суміші в прес-формі приводить до зміни висоти (товщина) виробу. По-друге, при пресуванні до заданої товщини виробу (наприклад, на механічних пресах) різниця в кількості формувальної суміші в прес-формі веде до неоднакового тиску пресування. Крім того, при значному тиску (вище заданих) і нестабільності процесу засипки знижується надійність устаткування. По-третє, при пресуванні в багатомісних (багатокубел) прес-формах має місце нерівномірність розподілу формувальної суміші по окремих прес-формах. По-четверте, при однаковій висоті засипки прес-форм, але різній кількості формувальної суміші в них, вироби одержують однакову товщину в стислому стані, але різну після випресовки через неоднакову густину і пружну деформацію напівфабрикату (пресування).
Отже, засипку прес-форм формувальною сумішшю можна віднести до об'ємного дозування і до процесу закінчення сипкого матеріалу з отвору відповідного пристрою [24, 44, 79]. Процес засипки - це наповнення прес-форм формувальною сумішшю з максимальною густиною і рівномірністю і мінімальною погрішністю. Пристрої, що забезпечують процес засипки прес-форм формувальною сумішшю, одержали назву засипних (наповнювальних) пристроїв, прес-мішалок, наповнювачів, завантажувальних пристроїв і т.п. [15, 24, 79].
Засипку прес-форм при напівсухому пресуванні формувальних сумішей (мас) можна представити у вигляді блок-схеми (мал.9.5).
Кожна з приведених в блок-схемі технологічних операцій має певне значення і характеризується оптимальними параметрами.
До суміші в бункерах пред'являються вимоги як по формуванню певного запасу, так і по стабілізації її властивостей. Засипка (дозування) формувальної суміші з порушеними властивостями приводить до виробництва неякісних виробів. При засипці як мірна місткість використовуються прес-форми, змонтовані в столі преса. Переміщення, заповнення і розподіл формувальної суміші за об'ємом прес-форми на практиці здійснюється уручну або частіше за допомогою механічних засобів. Основна вимога при переміщенні прес-форми з першої позиції на другу полягає в недопущенні перерозподілу суміші в об'ємі прес-форми. Загальна тривалість технологічних операцій при виробництві пресованих будівельних виробів повинна бути менше часу циклу пресування (tnp). Тому швидкодії процесу засипки і засипних пристроїв винне уділятися особлива увага [24, 44, 79].
Мал.9.5. Блок-схема засипки прес-форм при напівсухому пресуванні
Основи теорії засипки прес-форм і засипних пристроїв висловлені в роботах Р.А. Андрієвського, В.Е. Берниковського, Е.В. Задорожного, А.С. Ільіна, С.С. Кипарісова, Е.Е. Кольма-на-Іванова, Д.В. Кондрашова, І.Д. Радомисельського, І.М. Фе-дорченко, А.А. Соловьева, Р.Я. Попильского і інших.
Кількість формувальної суміші, яка повинна бути засипано в прес-форму перед пресуванням, в масовому або об'ємному виразах визначається по формулах [15, 24, 79]:
(9.12)
(9.13)