123553 (598586), страница 19
Текст из файла (страница 19)
Шестой этап характеризуется широким внедрением ЭВМ в технологию, управление и планирование производства, т.е. является этапом кибернетизации.
Следует заметить, что приведенное деление процесса эволюции техники на этапы незначительно отличается от периодизации, принятой в истории техники, гае в основу периодизации положен, прежде всего, основной вид используемых энергетических ресурсов, Однако для анализа последовательного усложнения техники принятая здесь периодизация ее эволюции удобна.
Г.Н. Поворов, А.И. Половинкин [3], Б.С. Флейшман [4] попытались ввести перечисленные выше этапы в хронологические рамки, дать количественную оценку сложности технических объектов и прогнозировать появление новых классов систем в будущем.
Обобщенные результаты их исследований приведены в табл.6.1, в которой использована для оценки сложности так называемая теоретико-множественная концепция [1], т.е. сложность системы определяется количеством входящих в эту систему элементов.
По мнения А.И. Половинкина [3], кроме количества входящих в систему элементов необходимо учитывать также трудоемкость их изготовления, ремонта и т.д., то есть наряду со сложностью системы в целом, учитывать сложность составляющих ее элементов.
Таблица 6.1
Эволюция сложности технических и естественных объектов и систем
Этап | Уровень сложности | Вербальная характеристика | Приблиз кол-во классов ТО | Среднее число элементов (деталей) | Время возник-новения | Примеры технических объектов и систем | Примеры естест-венных объектов |
1. | Простые предметы | Одноэлементные орудия | 5 20 | 1 | 2600 - 100 тыс. лет назад 40-19 тыс. лет до н.э. | Галечные орудия, рубило | Речная галька |
1а. | Сложные предметы | Составные орудия из жестко соединенных деталей | 50 | 10 | 15-10 тысячелетие до н.э. | Вкладышевые орудия, ткани | Паутина |
1б. | Превращающиеся предметы | Предметы, меняющие физические свойства при термическом и др. воздействии | 1 | 7 тысячелетие до н.э. | Обожженная керамическая посуда | Горная смола | |
2. | Простые системы элементов | Механизмы | 100 | 10-100 | 1000 лет назад | Ворот | |
3. | Простые системы механизмов | Машины и устройства с детерминированным взаимодействием элементов | 10-103 | XV XIX в. в. | Станки и др. машины | Скелеты высших животных | |
4. | Простые системы машин | Системы, обеспечивающие полный цикл переработки сырья | 50000 | 104 | ХХ в. | Станки "Обрабатывающий центр" | |
5. | Автоматические системы | Системы, однозначно реагирующие на ограниченный набор внешних воздействий. Внутренняя организация приспособлена к переходу в равновесное состояние при выводе из него. | 104-105 | ХХ в. | Атомные часы | Солнечная система | |
6а. | Сложные системы | Системы с массовым случайным взаимодействием элементов. | 104-107 | ХХ в. | Автоматическая телефонная станция | ||
6б. | Сложные решающие системы | Системы, имеющие постоянные критерии различения сигналов и постоянные реакции на широкие классы внешних воздействий. | 104-109 | середина ХХ в. | Радар, МЭСМ (6000 ламп) - 1951 г. | Аппарат зрения | |
6в. | Самоорганизующиеся, превращающиеся сложные системы | Системы, имеющие гибкие критерии различения сигналов и гибкие реакции на внешние воздействия, приспосабливающиеся к заранее неизвестным сигналам. | 104-1010 | Конец ХХ в. | Кибернетические устройства на основе микроэлектроники (106 элементов на одном чипе, в 2000 г. - 109 элементов) или 1011 в ЭВМ | Простейшие организмы | |
6г. | Самоорганизующиеся предвидящие сложные системы | Системы, способные к росту, развитию. Сложность их поведения начинает превосходить сложность воздействия на них индифферентного внешнего мира. | 108-1030 | Человек | |||
7. | Парадоксальные системы (перевоплощающиеся) | Системы столь обширные и сложные, что они способны управлять -пространством и временем, изменять космические формы своего бытия. | 1030-10200 |
Логику подобных предложений нетрудно понять при взгляде на табл.6.1. Так, превращающиеся одноэлементные предметы, в частности, обожженная керамическая посуда, появились в более поздний исторический период и, по-видимому, были технологически более сложными, чем сложные многоэлементные предметы.
Помимо технологической сложности теоретико-множественная концепция не учитывает и функциональную сложность систем, которая, например, в химической аппаратуре и биологических объектах, в отличие от механических систем, является определяющей.
В качестве иллюстрации в табл.6.2 приведено количество деталей в некоторых видах химической аппаратуры.
При оценке сложности приведенных в табл.6.2 аппаратов на основе теоретико-множественной концепции получится, что контактные аппараты менее сложны, чем теплообменники. Однако функционально дело обстоит наоборот.
Помимо процессов теплообмена, свойственных как теплообменным, так и контактным аппаратам, в последних одновременно протекают процессы массообмена (диффузия реагентов к поверхности катализатора, абсорбция на ней, десорбция продуктов реакции, их диффузия от катализатора) и собственно химические превращения.
Таблица 6.2
Сложность некоторых химических аппаратов
Аппарат | Количество деталей |
Мерник неупаренной пульпы производства аммофоса | 213 |
Холодильник кожухотрубчатый ОСТ 26-291-78 | 480 |
Теплообменник спиральный | 3577 |
Теплообменник синтез-газа производства аммиака | 5233 |
Абсорбционная башня производства нитрита натрия | 672 |
Скоростной аммонизатор-испаритель | 500 |
Контактный аппарат производства нитрита натрия | 543 |
Контактный аппарат ВК-100-У-01 для поглощения сернистых соединений в производстве аммиака | 2500 |
По мнению А.К. Хазена [5], еще серьезнее выглядит проблема оценки сложности природных биологических объектов. Вот, что он пишет по этому поводу.
Все живое на земле имеет своей основой серию простейших элементов - аминокислот, которую составляют в большинстве случаев двадцать из более чем сотни известных химии аминокислот. Эти аминокислоты способны образовывать большое разнообразие соединений, в частности, белковых, которые признаны наукой основными строительными материалами живого.
Простейшая бактерия - кишечная палочка - содержит 3000 различных белков. В организме человека содержится 5 106 различных белков. Полтора миллиона известных видов живых организмов содержат 1012 различных белков.
Кроме аминокислот существует еще один вид элементов живого - восемь мононуклеатидов, из которых образуются нуклиновые кислоты. Их количество в кишечной палочке - около 103, а для всех видов живого 1010.
Автору представляется, что кажущиеся почти непреодолимыми трудности в анализе приведенных примеров связаны здесь, прежде всего, с нарушением самого принципа системных исследований - рассмотрения объекта как элемента системы, относящейся к следующему, более высокому, иерархическому уровню, и как системы элементов следующего, более низкого иерархического уровня.
Отсюда вытекает определение элемента технической системы: под элементом технической системы понимается ее часть, предназначенная для выполнения определенных функций и неделимая на составные части при заданном уровне рассмотрения [6].
В примерах, приведенных А.М. Хазеном, между системой "человек" с одной стороны и аминокислотами и нуклеиновыми кислотами с другой пропущено несколько иерархических уровней. Врач, исследующий больного, почти никогда не доходит до уровня белковых структур системы "человек" в целом. В зависимости от жалоб больного он старается выделить систему следующего иерархического уровня: нервную, пищеварения, кровообращения и пр., а затем ищет больной орган этой системы и т.д.
Вот это ограничение ближайшими иерархическими уровнями свойственно для системного исследования природных и технических объектов. В результате солнечная система оценивается как система менее сложная, чем простейшие организмы, живущие на земле.
Аналогичное положение наблюдается и в технике. Например, отделение синтеза и дистилляции карбамида содержит 149 технических объектов и имеет сложность более низкую, чем один из этих 149 объектов - колонна синтеза карбамида. Это не вызывает особых трудностей в процессе проектирования: проектирование колонны синтеза карбамида будет вестись группой специалистов с учетом входов и выходов, диктуемых системой более высокого уровня, а проектирование цеха будут вести другие специалисты, рассматривая колонну как "черный ящик" определенных габаритов с заданными входами и выходами.
Такой подход существенно облегчает задачу исследователя, проектировщика, конструктора, давая им метод декомпозиции сложной задачи. Конечно это не избавляет нас от всех сложных проблем.
Для объектов живой природы это можно проиллюстрировать еще одним примером из книги А.М. Хазена [5].
Нейроны, очевидно, могут рассматриваться как элементы, непосредственно слагающие нервную систему. У муравья их 200, у пчелы 500-900, у человека - десятки миллиардов. Эти данные позволяют количественно сравнивать сложность нервной системы живых организмов.
Приведенные выше рассуждения позволяют сделать вывод о допустимости оценки сложности технических систем на основе теоретико-множественной концепции. Поэтому для иллюстрации концепции сложности технических систем можно использовать примеры, приведенные в табл.6.1.
Заканчивая обзор эволюции технических объектов, необходимо отметить, что данные табл.6.1 не позволяют прогнозировать время появления самоорганизующихся и парадоксальных систем. Дело в том, что функция, выражающая зависимость сложности технические объектов от времени их появления аппроксимируется гиперболой с почти взаимно перпендикулярными лучами и появления систем с числом элементов 1020 и более, согласно экстраполяции, можно ожидать в очень короткое время, опережающее самые оптимистические прогнозы писателей-фантастов.
Однако У. Эшби, ссылаясь на известные астрономические расчеты, определил число атомов в видимой части Вселенной примерно в 1073 [7]. Следовательно, для реального построения парадоксальной системы во Вселенной может попросту не найтись нужного количества строительного материала. Поэтому представляется сомнительной сама возможность реального построения парадоксальных систем.
Можно ожидать, что гиперболическая зависимость возрастания сложности технических объектов от времени на каком-то этапе развития перейдет в логистическую функцию (S-функцию), как это свойственно для эволюционных процессов. И лишь когда наметится начало второго перегиба S-функции, появится возможность прогнозирования времени появления систем высшего уровня сложности с достаточной степенью вероятности. Пока остается неразрешимой интересная проблема, какой предельной сложности техники в принципе способна достигнуть человеческая цивилизация.