123305 (598577), страница 3
Текст из файла (страница 3)
люминесцентный метод;
поляризационно – оптический метод;
рефрактометрический метод.
В оптических (фотометрических) методах анализа используется связь между составом системы и ее оптическими свойствами: светопоглощением; светорассеянием; преломлением света; вращением плоскости поляризации плоско поляризованного света; вторичным свечением вещества и т.д.
Спектрофотометрический и фотоколориметрический анализы основаны на способности окрашенных растворов, поглощать ультрафиолетовый, видимый или инфракрасный свет. Степень поглощения излучения зависит от концентрации вещества в растворе (абсорбционная спектроскопия).
Нефелометрия основана на способности мутных растворов (содержащих взвесь – меловой раствор, дым и др.) суспензий рассеивать падающий на них пучок света. Интенсивность света рассеянного частицами зависит от концентрации и фиксируется фотоэлементами.
Люминесцентный метод анализа основан на способности свойства веществ, излучать свет под воздействием различных возбуждающих факторов, установлении зависимости этого излучения от концентрации вещества.
Рефрактометрический метод анализа основан на использовании явления преломления света на границе двух сред, на измерении показателя преломления или разницы показателей преломления веществ.
Поляриметрический метод анализа основан на определении содержания вещества по вращению плоскости поляризации. Метод применим только для оптически активных веществ, т.е. способных вращать плоскость поляризации света.
1.3.2 Электрохимические методы анализа
Электрохимические методы анализа: основаны на использовании электрохимических процессов между составом системы и ее электрохимическими характеристиками электропроводностью; электродным потенциалом; поляризацией; количеством электричества и т.д. Для протекания электрохимических процессов используются электролитические ячейки, представляющие собой систему, состоящую из электролитов и электродов, контактирующих между собой. На границе раздела фаз электрод – электролит протекает электрохимическая реакция, в результате которой образуется электродный потенциал.
Электрохимические методы анализа классифицируются в зависимости от процессов происходящих на электродах:
1) методы, не связанные с электродной реакцией, измеряемый сигнал в них является откликом на изменения электрохимических свойств в объёме раствора ( низко- и высокочастотная кондуктометрия );
2) методы, основанные на электродной реакции, в результате которой ток через границу раздела фаз не протекает и на границе раздела фаз устанавливается равновесный потенциал, величина которого зависит от концентрации компонентов, участвующих в электродной реакции (потенциометрия).
3) методы, основанные на электродной реакции между электродом и приэлектродной частью раствора, в ходе которой электроны или ионы переходят через границу раздела фаз, обуславливая возникновение тока (вольтамперметрия, амперметрия, кулонометрия, электрографиметрия).
Широкий круг задач, решаемых с помощью электрохимических методов анализа, делает их конкурентоспособными по отношению к другим инструментальным методам, а в ряде случаев единственно возможными. Методы характеризуются:
высокой чувствительностью (10-3 – 10-7 массовых долей определяемого компонента) - полярография, кулонометрия;
широким интервалом определяемых концентраций (1 – 10-9 моль/л), избирательностью и экспрессивностью – ионометрия и ионографиметрия;
относительной простотой проведения анализа и невысокой стоимостью аппаратуры – кондуктометрия и потенциометрия;
возможностью концентрирования в рамках самого метода (инверсионная вольтамперметрия) или сочетания с другими методами (например, хроматографией, экстракцией);
лёгкостью автоматизации всего аналитического цикла – все методы.
1.3.3 Хроматографические методы анализа
Хроматографические методы анализа (хроматография) предназначены для определения качественного и количественного состава газообразных и жидких веществ. Они широко применяются в научных целях для изучения физико-химических свойств газов и растворов, а в промышленной и лабораторной практике для анализа смеси газообразных, жидких и твёрдых веществ.
Методы основаны на разделении исследуемой смеси веществ между двумя несмешивающимися фазами - подвижной и неподвижной. Подвижная фаза представляет собой поток газа или жидкости, которая непрерывно перемещается вокруг неподвижной фазы (сорбента) – жидкости или твёрдого тела. В результате перемещения подвижной фазы исследуемая смесь разделяется на компоненты за счёт различной поглощаемости (сорбируемости) её составных частей при движении по слою сорбента.
В зависимости от признаков классификации различаются следующие виды хроматографии:
I. По агрегатному состоянию применяемой подвижной фазы: - жидкостная, газовая;
2. По состоянию неподвижной фазы газовой хроматографии - газотвердая, газожидкостная;
3 . По механизму разделения: ионообменная; адсорбционная; распределительная; осадочная;
4. По способу проведения процесса или аппаратному оформлению: колоночная; капиллярная; плоскостная.
Многие физико-химические методы анализа отличаются скоростью проведения определений вследствие высокой их селективности. Чувствительность физико-химических методов анализа превосходит чувствительность графиметрического и титрометрического. Так, чувствительность спектрофотометрических определений составляет 10-3-10-4 , люминесцентного - 10-5-10-6 , полярографического метода анализа – 10-3-10-7 массовых долей (% ) определяемого компонента.
Чтобы получить надежные результаты при использовании физико-химических методов анализа и наиболее полно использовать возможности этих методов, необходимо понимать как процессы химического взаимодействия, так и закономерности возникновения и измерения физических сигналов. Каждая стадия анализа, каждая его операция может быть источником случайных ошибок. Поэтому очень важно уметь оценить с помощью методов математической статистики достоверность полученных результатов анализа.
Физико-химические методы анализа широко используются в практике аналитического контроля протекания химико-технологических процессов на предприятиях, в ходе анализа веществ в производственных и научных лабораториях, а также лабораториях по контролю качества и сертификации продукции.
-
Особенности физико - химических методов аналитического контроля
Первая особенность заключается в высокой скорости получения результата с помощью физических и физико-химических методов анализа. Скорость анализа на многих производствах имеет большое значение, так как позволяет корректировать технологические процессы, снижать энергетические и др. затраты. На особо опасных производствах, в гражданской обороне в военном деле скорость получения информации о выбросе (появлении или применении) токсичных веществ в воздушное пространство позволяет предотвратить появление неоправданных жертв.
Современные приборы, работающие на принципах физических и физико-химических методов анализа, позволяют получать результаты, как на месте контроля, так и через несколько минут после поступления пробы в лабораторию.
Вторая особенность физических и физико-химических методов анализа не связана с непосредственным определением качества продукции, но благодаря ей представляется возможностью проведения анализа веществ на расстоянии. Примерами таких анализов могут служить:
анализ лунного грунта, выполненный рентгенофлуоресцентным устройством, установленным на луноходе;
определение состава атмосферы, окружающей планету Венера;
исследования атмосферы и грунта на Марсе, которые в настоящее время проводят специалисты США и Евросоюза с использованием методик и средст, разработанных российскими учёными. Разновидностью такого анализа является дистанционный контроль объектов нашей планеты с высокой радиоактивностью или токсичностью, а также на больших глубинах. Такие анализы находят все большее применение для контроля экологической обстановки в промышленно нагруженных районах, особенно при наличии в них ядерных и химических производств.
Третья особенность физических и физико-химических методов анализа позволяет автоматизировать процесс контроля химико-технологических и других производств. Используемые оборудование и приборы работают автоматически и на основании данных анализа регулируют подачу компонентов, поддерживая определенную среду (рН-, концентрацию) в технологическом процессе. Например, при производстве NН4NОз автоматические датчики дозируют подачу NН3 и НNОз на основании автоматического анализа среды в реакторе - нейтрализаторе (NH3 + НNОз = NH4NO3+ Q).
В настоящее время широко применяются автоматические газоанализаторы для контроля воздушной среды, воздуха в шахтах и колодцах, а также для определения мест утечки газов из трубопроводов или ёмкостей и решения других задач.
Четвертая особенность физических и физико-химических методов анализа заключается в возможности исследования веществ без отбора пробы из анализируемого образца, т. е. без его разрушения (недеструктивный анализ). Такие виды анализа проводятся в археологии, медицине, криминалистике и т.д. Иногда такой анализ проводится в какой-то определенной точке образца - локально. Локальный анализ выполняется чаще рентгеноспектральным методом, и широко применим в археологии, криминалистике, минералогии и др. Для целей локального анализа успешно применяется техника лазерной микроспектроскопии.
Пятая особенность физических и физико-химических методов анализа определяется возможностью работать с малыми количествами и концентрациями анализируемых (контролируемых) веществ, составляющих в образце менее 10-3%. Применение в этих случаях классических методов анализа невозможно.
Многие приборы, применяемые в физических и физико-химических методах анализа, совмещены с компьютерами, с помощью которых осуществляется управление химико-технологическими процессами, проводятся расчеты, статистическая обработка полученных данных и решаются другие аналитические задачи.
1.5 Выбор метода анализа
Выбор более рационального и точного метода лабораторного анализа вещества зависит от многих факторов и представляет довольно трудную задачу, так как обычно связан с необходимостью решения многовариантных задач. Поэтому для его проведения привлекаются специалисты высокой квалификации, знающие методики и особенности проведения анализа, а также умеющие пользоваться соответствующим оборудованием.
Аналитический контроль производимого вещества в ходе протекания автоматизированных химико-технологических процессов, как правило, одновариантен для точки контроля, которых может быть достаточно много. Он осуществляется в соответствии с заранее отработанной и, как правило, отлаженной программой выпуска продукции (технологией). Вместе с тем, изменение химического состава перерабатываемых веществ и образование новых веществ, отвечающих заданным требованиям, обязывает операторов постоянно контролировать режимы процессов. При этом измеряются параметры, как промежуточных продуктов, так и соответствие выпускаемой продукции заданным требованиям, что позволяет судить о её качестве.
В лабораторных условиях наиболее просто решить задачу об определении количественного содержания одного элемента (вещества) в анализируемом продукте. Если определяемый элемент является основным компонентом анализируемого объекта и его содержание велико, применяются химические методы анализа - гравиметрический или титриметрический. Если концентрация определяемого элемента очень мала, то анализ проводится с помощью физико-химических методов анализа - оптическим, электрохимическим, хроматографическим или каким либо другим.
Выбор метода зависит также от того, какое количество проб подлежит анализу и с какой частотой.
Единичные анализы или небольшое их количество, как правило, целесообразно проводить химическими методами. Применение инструментальных методов для единичного анализа - нецелесообразно, т.к. много времени займет предварительная калибровка аппаратуры построение градуировочных графиков, стандартных образцов для сравнения и т.д. При необходимости проведения анализа большой серии проб приблизительно одинакового состава применение инструментальных методов не только оправдано, а просто необходимо.
Например, большое количество кальция в исследуемом образце определяется гравиметрическим или титриметрическим методом, относящимся к химическим методам. Причем, если нужна высокая точность, а длительность анализа не регламентируется – применяется гравиметрический (весовой) метод анализа. Если не требуется высокой точности, но нужен срочно результат - применяется титриметрический (объемный) метод анализа, в этом случае можно быстро оттитровать кальций комплексонометрически - это быстро, хотя точность анализа ниже.