63394 (597590), страница 3

Файл №597590 63394 (Четырехполюсники, электрические фильтры) 3 страница63394 (597590) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

1’ 2’

Рис.2.3. Емкостной фильтр нижних частот (ФНЧ-1)

Р абота ФНЧ-1:

При


При

На малых частотах емкость обладает большим сопротивлением и поэтому весь проходит только через резисторы r, R, не ответвляясь в емкость.

На больших частотах емкость обладает малым сопротивлением. Она закорачивает нагрузку и поэтому выходное напряжение мало.

Определим для этого фильтра АЧХ и ФЧХ, рассматривая его как Г-образный 4х-П, нагруженный активным сопротивлением R.

Сопротивления плеч фильтра:


Коэффициенты формы А:


Уравнение связи входного и выходного напряжений (1.6):


(2.8)


где - эквивалентное сопротивление при параллельном соединении R и r.

И

(2.9)

з (2.8) получаем фазо-частотную характеристику ФНЧ-1:

Передаточные функции ФНЧ-1 принимают вид:

(2.10)

где - значение передаточной функции на частоте ω=0.

Теперь, по формулам (2.9) и (2.10) можно, при известных значениях R, r, C-элементов, рассчитать и построить графики АЧХ и ФЧХ простейшего фильтра нижних частот (ФНЧ-1).

При изучении частотных характеристик фильтров удобно пользоваться АЧХ ФЧХ в параметрической форме. Для этого необходимо ввести в рассмотрение приведенную, или так называемую нормированную частоту, которая, в данном случае, определяется по формуле

(2.11)

где - граничная частота, на которой реактивное сопротивление емкости равно активному сопротивлению

Запишем (2.9) и (2.10) в параметрической форме:

(2.12)


(2.13)

Параметрические функции (2.11) и (2.12) позволяют проводить общий анализ АЧХ и ФЧХ фильтра при заданных значениях R, r-элементах и произвольном значении емкости С.

Пример 2. Рассчитать и построить графики при следующих исходных данных:

R=100 Ом – сопротивление нагрузки;

r=5 Ом – внутреннее сопротивление источника.

Оценить коэффициент прямоугольности передаточной функции по мощности.

Результаты расчетов представлены на Рис.2.4 и Рис.2.5.

Из этих рисунков видно, что передаточная функция по мощности при частоте ν=0 принимает значение H(0)=0,98, а затем плавно уменьшается с увеличением частоты. Коэффициент прямоугольности этой функции составляет всего П=0,545. Это означает, что данный фильтр соответствует идеальному фильтру на 54,5%.

Сдвиг фаз между входным и выходным напряжениями изменяется от 0 до 900. При этом выходное напряжение опережает входное.


2.4.2 Синтез емкостного фильтра нижних частот первого порядка

Синтез (проектирование) любого технического устройства начинается с разработки технического задания (ТЗ), в котором приводятся исходные данные и формулируются требования к устройству.

Применительно к ФНЧ-1 техническое задание на его проектирование можно изложить следующим образом:

  1. Спроектировать емкостной фильтр нижних частот, схема которого приведена на Рис.3.2.

  2. На вход фильтра подаются сигналы синусоидальной формы, частота которых изменяется от 0 до ∞.

  3. Сопротивление нагрузки R, а внутреннее сопротивление источника r, (R>>r).

  4. Передаточная функция по напряжению на нижней границе полосы пропускания (f1=0) должна принимать значение, близкое к единице, а на верхней границе f2 передаточная функция должна принимать значение H(f2)=H1.

  5. Определить потребное значение емкости, рассчитать АЧХ и ФЧХ фильтра, оценить коэффициент прямоугольности передаточной функции по мощности.

В условиях данной задачи неизвестной величиной является только емкость, которую достаточно просто можно найти из уравнения передаточной функции. Однако, в интересах общности изложения последующего материала воспользуемся передаточной функцией в параметрической форме (2.14), из которой найдем значение приведенной частоты 2, на которой передаточная функция (2.12) принимает заданное значение H1:


(2.14)


Очевидно, что (2.14) имеет смысл только при H10.

Теперь формулу (2.11) можем записать в виде


откуда находим потребное значение емкости для построения ФНЧ-1 Рис.3.2:


(2.15)


Пример 2.2. Спроектировать ФНЧ-1 Рис.2.3 при следующих исходных данных:

R=100 Ом – сопротивление нагрузки;

r=5 Ом – внутреннее сопротивление источника;

f2=1000 Гц – верхняя граница полосы пропускания;

H1=H(f2)=0,707 – значение передаточной функции на верхней границе полосы пропускания;

1=(f2)=0,5 - значение передаточной функции по мощности на верхней границе полосы пропускания.

Рассчитать АЧХ и ФЧХ фильтра, оценить коэффициент прямоугольности передаточной функции по мощности.

Результаты расчетов представлены на Рис.2.6 и Рис.2.7.

Из этих рисунков видно, что на верхней границе полосы пропускания f2=1000 Гц передаточная функция по мощности (f2)=0,5, что соответствует требованиям технического задания.

Сдвиг фаз между входным и выходным напряжениями (f2)=42,071 град. Коэффициент прямоугольности передаточной функции по мощности составляет П=0,545.

Потребное значение емкости для построения ФНЧ-1 Рис.3.2 составляет С=30,17 мкФ.


2.5 Г-образный фильтр нижних частот (ФНЧ-2)

2.5.1 Частотные характеристики ФНЧ-2

В целях повышения коэффициента прямоугольности передаточной функции по мощности применяют фильтры нижних частот второго порядка, в состав которых входят два реактивных элемента: L и C.

Рассмотрим Г-образный ФНЧ, схема которого представлена на Рис.2.8 (см.также Рис.1.6).

L


Z1

Z2 C R

Рис.2.8. Электрическая схема Г-образного ФНЧ

Работа Г-образного ФНЧ:


при

п ри

На малых частотах индуктивное сопротивление мало, а емкостное сопротивление велико, поэтому ток проходит в нагрузку с малым ослаблением, не ответвляясь в емкость.

На больших частотах индуктивное сопротивление велико, а емкостное сопротивление мало. Ток, прошедший через индуктивность, закорачивается емкостью. Поэтому выходное напряжение мало.

Определим АЧХ и ФЧХ Г-образного ФНЧ, рассматривая его как Г-образный 4х-П, нагруженный активным сопротивлением R.

Комплексные сопротивления плеч фильтра:


Коэффициенты формы А:


Уравнение связи входного и выходного напряжений (1.6) принимает вид:


(2.16)


Обозначим, как и ранее, действительную и мнимую части (2.16):

- действительная часть;

- мнимая часть.

Уравнение (2.16) запишем в виде:


(2.17)


Фазочастотная характеристика ФНЧ-2 определяется по формуле:

(2.18)



Комплексная передаточная функция по напряжению определяется из (2.17):


(2.19)


Модули передаточных функций по напряжению и мощности принимают вид:


(2.20)


Таким образом, при известных значениях R, L, C-элементов, по формулам (2.18), (2.20) можно рассчитать и построить графики АЧХ и ФЧХ Г-образного ФНЧ.

С целью общего анализа частотных характеристик Г-образного ФНЧ представим передаточные функции (2.20) в параметрической форме, для чего обозначим:


- приведенная (нормированная) частота;

- резонансная частота;

- сопротивление индуктивности;

- проводимость емкости;

- волновое (характеристическое) сопротивление;

- коэффициент нагрузки.


После подстановки обозначений в (2.20) получим передаточные функции в параметрической форме:

(2.21)



Пример 2.3. Рассчитать и построить семейство кривых передаточной функции по мощности в параметрической форме для трех значений коэффициента нагрузки:


Определить коэффициент прямоугольности передаточной функции по мощности при

Расчет передаточной функции по мощности, выполненный по формуле (2.21) приведен на Рис.2.9.


Из Рис.2.9 следует, что при Q1=0,8 передаточная функция достигает своего максимума, равного 1,86, а затем плавно уменьшается, Этот всплеск передаточной функции может быть желательным или нежелательным в зависимости от конкретного назначения фильтра.

При Q2=1 всплеск передаточной функции значительно меньше и при он вовсе отсутствует.

Таким образом, характер изменения передаточной функции Г-образного ФНЧ целиком определяется значением коэффициента нагрузки Q, который, в свою очередь, зависит от комбинации значений RLC-элементов. Следовательно, путем соответствующего выбора LC-элементов можно изменить форму кривой передаточной функции.

Коэффициент прямоугольности передаточной функции по мощности при составляет П=0,807, что значительно больше, чем у ФНЧ-1.

2.5.2 Синтез Г-образного фильтра нижних частот

Техническое задание на проектирование Г-образного ФНЧ формулируется следующим образом.

  1. Спроектировать Г-образный ФНЧ, схема которого представлена на Рис.2.8.

  2. На вход фильтра подаются сигналы синусоидальной формы, частота которых изменяется от нуля до бесконечности.

  3. Передаточные функции по напряжению и мощности в полосе пропускания (0…f2), должны быть максимально плоскими, т.е. не иметь всплесков, превышающих единицу, и на верхней границе полосы пропускания должны принимать значения .

  4. Сопротивление нагрузки чисто активное, равное R.

  5. Рассчитать потребные значения индуктивности и емкости для построения фильтра. Построить графики АЧХ и ФЧХ, оценить коэффициент прямоугольности передаточной функции по мощности.

Порядок проведения расчетов состоит в следующем.

Из анализа ТЗ и формул передаточных функций (2.20) следует, что при заданных значениях необходимо найти два неизвестных параметра L и C, при которых фильтр будет удовлетворять требованиям технического задания.

Другими словами, необходимо найти такие значения L, С-элементов, при которых передаточная функция H() проходит через точку на плоскости с координатами 2, H1.

Математически это означает, что для определения двух неизвестных необходимо составить два независимых уравнения и решить эту систему относительно L и С.

Для составления первого уравнения необходимо из семейства кривых Рис.2.9 выбрать кривую, которая соответствует требованиям ТЗ, и по ней при заданном значении найти значение приведенной частоты 2.

В данном случае требованиям ТЗ удовлетворяет передаточная функция , построенная при .

Точное значение приведенной частоты определяется путем решения уравнения:

(2.22)



Результаты расчетов по формуле (2.22) при приведены в таблице 2.1.

Таблица 2.1.

H1

0.707

0.6

0.5

0.4

0.3

0.2

0.1

2

1.0

1.55

1.316

1.513

1.783

2.213

3.154

Найденная приведенная частота 2 связана с верхней границей полосы пропускания и неизвестной резонансной частотой 0 следующим соотношением:


Отсюда получаем первое независимое уравнение для определения неизвестных LC-элементов


(2.23)


Выбранная кривая передаточной функции построена при .

Следовательно, второе независимое уравнение можно записать в виде:


(2.24)


Совместное решение (2.23) и (2.24) дает формулы для определения неизвестных LC-элементов:


(2.25)


Теперь по формулам (2.18), (2.20), и (2.25) можно рассчитать потребные значения LC-элементов для построения Г-образного ФНЧ, а также рассчитать и построить графики АЧХ и ФЧХ этого спроектированного фильтра.

Пример 2.4. Спроектировать Г-образный ФНЧ, схема которого представлена на Рис.2.8:

Исходные данные:

R=100 Ом – сопротивление нагрузки;

f2=1000 Гц – верхняя граница полосы пропускания;

H(f2)=0,707 – значение передаточной функции по напряжению на верхней границе полосы пропускания.

Требование к фильтру: передаточные функции по напряжению и мощности в полосе пропускания должны быть максимально плоскими, т.е. не иметь всплесков и провалов.

Решение. Из Рис.2.9. выбираем кривую , которая удовлетворяет требованиям технического задания.

Из таблицы 2.1 по заданному значению Н1=Н(f2)=0,707 выбираем соответствующее значение приведенной частоты 2=1.

По формулам (2.25) определяем потребные значения LC-элементов для построения Г-образного ФНЧ.

По формулам (2.18) и (2.20) рассчитываем АЧХ и ФЧХ спроектированного фильтра и оцениваем коэффициент прямоугольности передаточной функции по мощности этого фильтра.

Результаты расчетов приведены на Рис.2.10 и Рис.2.10а.

Из этих результатов главными являются найденные значения индуктивности и емкости: L=23 мГн и С=1,125 мкФ, при которых передаточные функции на верхней границе полосы пропускания принимают заданные значения:

Следовательно, спроектированный Г-образный ФНЧ удовлетворяет требованиям технического задания.

Коэффициент прямоугольности передаточной функции по мощности Г-образного ФНЧ составляет П=0,807.

Отметим, что изложенный порядок проектирования носит общий характер и может применяться в среде Mathcad при любой комбинации исходных данных: H1, f2, R, Q.


2.6 Т-образный фильтр нижних частот

2.6.1 Частотные характеристики Т-образного фильтра нижних частот

В целях дальнейшего повышения коэффициента прямоугольности применяют фильтры третьего порядка, к числу которых относится Т-образный ФНЧ, изображенный на Рис.2.11.

L 1 L2

Z1 Z3

Z2 C R

Рис.2.11. Электрическая схема Т-образного ФНЧ

Работа Т-образного ФНЧ


На малых частотах индуктивные сопротивления Z1, Z3 малы, а емкостное сопротивление Z2 велико, поэтому ток проходит в нагрузку с малым ослаблением.

На больших частотах на пути тока в нагрузку стоят два больших сопротивления индуктивностей L1 и L2, а ток, прошедший через L1 закорачивается малым емкостным сопротивлением.

Определим АЧХ и ФЧХ Т-образного ФНЧ, рассматривая его как Т-образный 4х-П, нагруженный активным сопротивлением R.

Комплексные сопротивления плеч фильтра:


Коэффициенты формы А:


где - коэффициент асимметрии фильтра, который может быть выбран в пределах

Уравнение связи входного и выходного напряжений:

(2.26)



Фазо-частотная характеристика фильтра определяется по формулам (1.8), а передаточная функция по напряжению рассчитывается по формуле (1.10).

Таким образом, при известных значениях RLC - элементов можно рассчитать и построить графики АЧХ и ФЧХ Т-образного ФНЧ, используя формулы (1.8), (1.10) и (2.26).

Представим, как и ранее для Г-образного ФНЧ, передаточные функции по напряжению и мощности в параметрической форме:

(2.27)



П ример 2.5. Рассчитать и построить семейство кривых передаточной функции по мощности в параметрической форме (2.27) для трех значений коэффициента нагрузки:

Результаты расчетов представлены на Рис.2.12.

Из Рис.2.12 следует, что для Т-образного несимметричного ФНЧ оптимальным значением коэффициента нагрузки следует считать Q2=1,0 при коэффициенте асимметрии , который был определен в результате предварительных исследований.

Коэффициент прямоугольности передаточной функции по мощности Т-образного несимметричного ФНЧ при Q=1 и равен П=0,905.


2.6.2. Синтез Т-образного фильтра нижних частот

Поставим задачу спроектировать Т-образный несимметричный ФНЧ по ТЗ на проектирование Г-образного ФНЧ.

Из Рис.2.11 видно, что в состав Т-образного фильтра входят три неизвестных реактивных элемента: L1, L2 и С, которые необходимо определить.

Следовательно, для определения трех неизвестных необходимо составить три независимых уравнения.

Порядок определения L1 и С аналогичен порядку определения этих элементов для Г-образного ФНЧ.

Из семейства кривых Рис.2.12 выбираем кривую, которая удовлетворяет требованиям ТЗ. В данном случае выбираем кривую которая построена при Q2=1.

После этого определяем значение приведенной частоты 2, на которой Н(2)=Н1. Для этого решаем следующее уравнение:


в результате получим таблицу 2.2.

Таблица 2.2.

Н1

0,707

0,6

0,5

0,4

0,3

0,2

0,1

2

1,5036

1,615

1,730

1,867

2,049

2,327

2,890

Далее, как и для Г-образного ФНЧ, можем записать два уравнения для определения L1 и С:


Совместное решение этих уравнений дает формулы для определения L1 и С:


(2.28)


Значение второй индуктивности L2 определяется из условия выбранного коэффициента асимметрии

(2.29)



Пример 2.6. Спроектировать Т-образный ФНЧ, схема которого показана на Рис.2.11.

Исходные данные:

R=100 Ом – сопротивление нагрузки;

f2=1000 Гц – верхняя граница полосы пропускания;

H1=H(f2)=0,707 – значение передаточной функции по напряжению на верхней границе полосы пропускания.

Передаточные функции H(f) и (f) в полосе пропускания не должны иметь всплесков и провалов.

Решение. Из таблицы 2.2 по заданному значению H1=H(f2)=0,707 при Q=1 выбираем значение приведенной частоты 2=1,5036.

Потребные значения индуктивностей и емкости определяем по (2.28), (2.29).

Расчет передаточной функции по мощности проведем по формуле (1.10), ФЧХ – по формуле (1.8) с учетом (2.26).

Результаты расчетов представлены на Рис.2.14, Рис.2.14а.

Из этого рисунка видно, что потребные значения индуктивностей и емкости для построения несимметричного Т-образного ФНЧ составляют: L1=24мГн, L2=11 мГн, C=2,389 мкФ.

Передаточные функции на верхней границе полосы пропускания принимают значения: Н(f2)=0,707, (f2)=0,5, что и требовалось по техническому заданию.

Коэффициент прямоугольности передаточной функции по мощности составляет П=0,905.


Характеристики

Тип файла
Документ
Размер
6,93 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее