48970 (597418), страница 3
Текст из файла (страница 3)
Після розміщення компонентів виробляється з'єднання їхніх висновків провідниками. При цьому необхідно враховувати, що до висновку компонента можна підключити тільки один провідник. Для виконання підключення курсор миші підводиться до висновку компонента і після появі прямокутної площадки синього кольору натискається ліва кнопка і провідник, що з'являється при цьому, протягається до висновку іншого компонента до появи на ньому такої ж прямокутної площадки, після чого кнопка миші відпускається, і з'єднання готове. При необхідності підключення до цих висновків інших провідників у бібліотеці Passive вибирається крапка (символ з'єднання) і переноситься на раніше встановлений провідник. Щоб крапка почорніла (спочатку вона має червоний колір), необхідно клацнути мишею по вільному місцю робочого поля. Якщо ця крапка дійсно має електричне з'єднання з провідником, то вона цілком офарблюється чорним кольором. Якщо на ній видний слід від провідника, що перетинає,то електричного з'єднання немає і крапку необхідно установити заново. Після вдалої установки до крапки з'єднання можна підключити ще два провідники. Якщо з'єднання потрібно розірвати, курсор підводиться до одному з висновків компонентів або крапці з'єднання і з появою площадки натискається ліва кнопка, провідник приділяється на вільне місце робочого поля, після чого кнопка відпускається. Якщо необхідно підключити висновок до наявного на схемі провідникові,то провідник від висновку компонента курсором підводиться до зазначеного провідника і після появи крапки з'єднання кнопка миші відпускається. Слід зазначити,що прокладка сполучних провідників виробляється автоматично, причому перешкоди — компонента й інших провідників — обгинаються по ортогональних напрямках (по горизонталі або вертикалі).
Крапка з'єднання може бути використана не тільки для підключення провідників, але і для введення написів (наприклад, указівки величини струму в провіднику, його функціонального призначення і т.п.). Для цього необхідно двічі клацнути по крапці й у вікні, що розкрилося, увести необхідний запис (не більше 14 символів), причому запис можна зміщати вправо шляхом уведення ліворуч потрібної кількості пробілів. Ця властивість може бути використано й у тому випадку, коли позиційне позначення компонента (наприклад Cl, R10) накладається на поруч минаючий провідник або інші елементи схеми.
Якщо необхідно перемістити окремий сегмент провідника, до нього підводиться курсор, натискається ліва кнопка і після появи у вертикальній або горизонтальній площині подвійного курсору виробляються потрібні переміщення.
Підключення до схеми контрольно-вимірювальних приладів виробляється аналогічно. Причому для таких приладів, як осцилограф або логічний аналізатор, з'єднання доцільно проводити кольоровими провідниками, оскільки їхній колір визначає колір відповідної осцилограми. Кольорові провідники доцільні не тільки для позначення провідників однакового функціонального призначення, але і для провідників, що знаходяться в різних частинах схеми (наприклад, провідники, шини даних до і після буферного елемента). Приклади такого оформлення можна знайти в каталогах готових схем (див. файл adc-dacl.ca4).
При позначенні компонентів необхідно дотримувати рекомендацій і правил, передбачених ЄСКД (єдиною системою конструкторської документації). Що стосується пасивних компонентів, то при виборі їхніх позначень особливих труднощів не виникає. Труднощі виникають при виборі активних елементів —: мікросхем, транзисторів і т.п., особливо при необхідності використання компонентів вітчизняного виробництва, коли потрібно установити точна відповідність функціональних позначень висновків і параметрів закордонних і вітчизняних компонентів. Для полегшення цієї задачі можна скористатися таблицями відповідності закордонних і вітчизняних компонентів..
При імпортуванні в створювану схему іншої схеми або її фрагментів доцільно діяти в наступній послідовності:
командою File>Save As записати у файл створювану схему, указавши його ім'я в діалоговому вікні (розширення імені файлу вказувати не обов'язково, програма зробить це автоматично);
командою File>Open завантажити на робоче поле імпортовану схему стандартним для Windows методом (деякі особливості описані наприкінці глави);
командою Edit>Select All виділити схему, якщо імпортується вся схема, або виділити її потрібну частину;
3. Елементна база
У цій главі приводяться короткі зведення про моделі компонентів радіоелектронної апаратури (РЕА), що є в програмі EWB. Додаткові зведення по таких компонентах будуть приводитися в інших главах у міру їхнього використання в конкретних схемах. Додаткова інформація про реальні елементи РЕА (умови й області застосування, класифікаційні параметри, конструктивні особливості й ін.) поміщені в додатку 2.
3.1 Джерела струму
У загальному випадку джерела токи можуть бути представлені у вигляді генератора напруги або генератора струму (див. розд. 5.1). Джерела струму поділяються на джерела постійного струму, змінного струму і керовані (функціональні) джерела. Крім того, вони підрозділяються на вимірювальні джерела і джерела для електроживлення.
Прикладом вимірювального джерела є розглянутий у гл. 3 функціональний генератор. З джерел постійного струму в якості вимірювального широко використовується так називаний нормальний елемент (електрохімічне джерело), що володіє високою стабільністю вихідної напруги і використовуваний у високоточних зразкових установках для перевірки вольтметрів, амперметрів і інших вимірювальних приладів (див. розд. 16.6).
Джерела для електроживлення є самими масовими пристроями (див. додаток 6). Їх прийнято поділяти на первинні і вторинні. До первинних джерел відносяться: електрогенератори, що перетворять механічну енергію в електричну, термоелектрогенератори, сонячні й атомні батареї, електрохімічні джерела. В вторинних джерелах струму виробляється перетворення струму первинного джерела (див. гл. 12).
Джерела постійного струму в програмі EWB представлені на мал. 3.1.
а) б) в) г)
Мал.3.1. Джерела постійного струму.
Мал.3.2. Вікно задання ЕРС джерелу живлення.
Ідеальний (із внутрішнім опір Ri = 0) джерело постійної напруги +5 В (мал. 3.1, а) призначений, в основному, для логічних схем. На мал. 3.1. показане ідеальне джерело постійної напруги. ЕРС задається в діалоговому вікні на мал.3.2 .
Значення параметрів джерела напруги, які характеризуються ЕРС (Pull-Up Voltage) і внутрішнім опором (Resistance) (мал. 3.1, в), установлюються допомогою діалогового вікна (див. мал. 3.3).
Мал.3.3. Вікно установки параметрів джерела живлення.
Установка струму ідеального джерела струму (мал. 3.1, г) виробляється аналогічно установці ЭРС. Джерела змінного струму в програмі EWB підрозділяються на джерела не модульованих (мал. 3.4) і модульованих (мал. 3.8) сигналів. Для ідеального генератора змінної напруги (мал. 3.4, а) напруга (Voltage), частота (Frequency) і початкова фаза (Phase) синусоїдального сигналу задаються у вікні на мал. 3.5.
а) б) в)
Мал.3.3. Джерела змінного струму.
Мал.3.5. Вікно установки параметрів джерела синусоїдальної напруги.
Мал.3.6. Вікно установки параметрів джерела імпульсної напруги прямокутної форми.
Установка струму, частоти і початкової фази ідеального генератора змінного струму (мал. 3.4, б) здійснюється аналогічно джерелу синусоїдальної напруги.
Ідеальний генератор імпульсної напруги (мал. 3.4, в) є джерелом полярних імпульсів із задаються амплітудою, частотою проходження і коефіцієнтом заповнення (Duty Cycle), (вікно на мал. 3.6).
При зазначеному на мал. 3.6 значенні коефіцієнта заповнення 50% (тривалість імпульсу дорівнює половині періоду) періодична імпульсна послідовність називається меандром. Такий сигнал може бути представлений у виді суми гармонійних складових (простих синусоїд) шляхом розкладання в ряд Фур'є [35]:
U(x) = Um/2 + (2Um/7п)[cos(2п) - 0,333 cos(6 п F) + 0,2cos(10 п F) - ...]. (3.1)
Перший доданок вираження (3.1) — постійній складовій, рівна половині амплітуди Um, перше доданок у квадратних дужках — перша гармоніка, друге — третя гармоніка і т.д. У графічному виді таке розкладання звичайне представляється у виді так називаного лінійчатого спектра, коли по осі X відкладається частота (номер гармоніки), а по осі Y у виді вертикальної лінії — амплітуда гармоніки. Для одержання такого спектра засобами програми EWB 5.0 (див. гл. 1) необхідно скласти ланцюг із джерела (мал. 3.4, в), резистора, заземлення і застосувати команду Analysis>Fourier. Отримане при цьому спектральний розподіл гармонік для розглянутої імпульсної послідовності при Um = 2 В показано на мал. 3.7. Для того щоб у чорно-білому зображенні була видна постійна складова, у меню Graph Properties>Left Axis був обраний білий колір для осі X. З мал. 3.7 видно, що постійна складова дійсно дорівнює Um/2 = 1 В, амплітуда першої гармоніки 2Um/7i = 1,27 В. Помітимо, що для імпульсної послідовності при шпаруватості, не рівної 2, вираження (3.1) трохи ускладнюється [51].
Мал.3.7. Лінійчастий спектр послідовності прямокутних імпульсів типу меандр.
а) б)
Джерела модульованої напруги в програмі EWB представлені компонентами, показаними на мал. 3.8.
Джерело на мал. 3.8, а — ідеальний генератор амплітудно-модульованих коливань (AM), параметри якого задаються в діалоговому вікні (мал. 3.9), у якому позначено: Carrier Amplitude — амплітуда несучої, Carrier Frequency — частота несучої, Modulation Index — коефіцієнт модуляції, Modulation Frequency — частота коливання, що модулює.
Осцилограмма АМ-сигнала при М = 0,5 і значеннях інших параметрів, зазначених у вікні на мал. 3.9, показана на мал. 3.10. Коефіцієнт модуляції визначається як відношення амплітуди що обгинає (на осцилограмі — 0,5 В) до її середнього значення, тобто до амплітуди несучої (1 В). Коефіцієнт модуляції завжди менше або дорівнює одиниці.
Аналітичне вираження для АМ-сигнала записується в наступному виді [51]:
U(t) = Uc[l+ Msin(2пFm)t]sin(2пFс t)
Це вираження після тригонометричних перетворень може бути представлене в більш наочному виді [51]:
U(t) = Uc[cos(2пFc)t + 0,5Mcos2п(Fc + Fm)t + 0,5Mcos2п(Fc - Fm)t]. (3.2)
Перший доданок вираження (3.2) називається несущим коливанням, другий доданок — коливанням з верхньої бічний, третє — коливанням з нижньою бічною частотою.
Параметри джерела частотно-модульованих коливань (ЧМ) на мал. 3.8, б задаються в діалоговому вікні (мал. 3.11), аналогічному по наборі параметрів вікну на мал. 3.9.
Мал.3.9. Вікно установки параметрів джерела АМ-коливань.
Мал.3.10. Осцифалограма АМ-коливань.
Мал.3.11. Вікно установки параметрів джерела ЧM-коливань.