48151 (597384), страница 2

Файл №597384 48151 (Практикум по решению линейных задач математического программирования) 2 страница48151 (597384) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Определить такой вариант распределения рекламного бюджета по разным направлениям рекламы, который дает фирме наибольшую прибыль от рекламы своей продукции.

  1. Продукция фабрики выпускается в виде бумажных рулонов стандартной ширины – 2 м. По специальным просьбам потребителей фабрика поставляет также рулоны других размеров, разрезая стандартные рулоны. Типичные заявки на рулоны нестандартных размеров приведены в таблице:

Заявка

Нужная ширина

рулона, м

Нужное кол-во

рулонов

1

0,8

150

2

1,0

200

3

1,2

300

Определить оптимальный вариант раскроя стандартных рулонов, при котором все поступающие специальные заявки будут выполнены при минимальных затратах бумаги.

Графический метод решения задач линейного программирования


1. Область решений линейных неравенств.

Пусть задано линейное неравенство с двумя переменными и

(1)

Если величины и рассматривать как координаты точки плоскости, то совокупность точек плоскости, координаты которых удовлетворяют неравенству (1), называется областью решений данного неравенства. Следовательно, областью решений неравенства (1) является полуплоскость с граничной прямой линией .

Пример 1. Найти полуплоскость, определяемую неравенством

.

Решение. Строим прямую по двум точкам, например, по точкам пересечения с осями координат (0; 4) и (6; 0). Эта линия делит плоскость на две части, т.е. на две полуплоскости. Берем любую точку плоскости, не лежащую на построенной прямой. Если координаты точки удовлетворяют заданному неравенству, то областью решений является та полуплоскость, в которой находится эта точка. Если же получаем неверное числовое неравенство, то областью решений является та полуплоскость, которой эта точка не принадлежит. Обычно для контроля берут точку (0; 0).

Подставим и в заданное неравенство. Получим . Следовательно, полуплоскость «к нулю» является областью решений данного неравенства (заштрихованная часть рис. 1).

Пример 2. Найти полуплоскость, определяемую неравенством

.

Решение. Строим прямую , например, по точкам (0; 0) и (1; 3). Т.к. прямая проходит через начало координат, точку (0; 0), то нельзя брать ее для контроля. Возьмем, например, точку (– 2; 0) и подставим ее координаты в заданное неравенство. Получим . Это неверно. Значит, областью решений данного неравенства будет та полуплоскость, которой не принадлежит контрольная точка (заштрихованная часть рис. 2).

2. Область решений системы линейных неравенств.

Пример. Найти область решений системы неравенств:

Решение. Находим область решений I-го неравенства (рис. 1) и II-го неравенства (рис. 2).

Все точки части плоскости, где штриховка наложилась, будут удовлетворять и первому и второму неравенству. Таким образом, получена область решений заданной системы неравенств (рис. 3).

Если к заданной системе неравенств добавить условия и , то область решений системы неравенств будет находиться только в I координатной четверти (рис. 4).

Принцип нахождения решения системы линейных неравенств не зависит от количества неравенств, входящих в систему.

Примечание: Область допустимых решений (ОДР) если существует, то представляет собой замкнутый или незамкнутый выпуклый многоугольник.

3. Алгоритм графического метода решения ЗЛП

Если задача линейного программирования содержит только две переменные, то ее можно решить графическим методом, выполняя следующие операции:

  1. Строим все полуплоскости, соответствующие ограничениям системы.

  2. Находим область допустимых решений (ОДР), как множество точек, в котором пересекаются все построенные полуплоскости.

  3. Строим вектор , выходящий из начала координат, где и – это коэффициенты при неизвестных в целевой функции . Этот вектор указывает направление возрастания целевой функции.

  4. Перпендикулярно вектору проводим так называемую линию уровня (т.е. прямую , проходящую через начало координат).

  5. Перемещаем линию уровня параллельно самой себе в направлении вектора (если задача на максимум (max)) или в противоположном направлении (если задача на минимум (min)) до тех пор, пока линия уровня имеет хотя бы одну общую точку с ОДР.

  6. Находим координаты этой общей крайней точки, решая систему уравнений прямых, на пересечении которых она находится.

  7. Подставляем эти координаты в целевую функцию и находим ее max (или min).

Пример. Решить задачу линейного программирования графическим методом

max

Решение. Третье и четвертое ограничения системы – двойные неравенства, преобразуем их к более привычному для подобных задач виду , это и , т.о. первое из полученных неравенств (или ) относится к условию неотрицательности, а второе к системе ограничений. Аналогично, это и .

Т.о. задача примет вид

max

,

Заменив знаки неравенств на знаки точных равенств, построим область допустимых решений по уравнениям прямых:

; ; ; .

Областью решений неравенств является пятиугольник ABCDE.

Построим вектор . Через начало координат перпендикулярно вектору проведем линию уровня . И затем будем перемещать ее параллельно самой себе в направлении вектора до точки выхода из области допустимых решений. Это будет точка С. Найдем координаты этой точки, решив систему, состоящую из уравнений первой и четвертой прямых:

.

Подставим координаты точки С в целевую функцию и найдем ее максимальное значение Пример. Построить линии уровня и для задачи линейного программирования:

max (min)

Решение. Область допустимых решений – открытая область (рис. 6). Линия уровня проходит через точку В. Функция Z имеет минимум в этой точке. Линию уровня построить нельзя, так как нет точки выхода из области допустимых решений, это значит, что .

Задания для самостоятельной работы.

  1. Найти область решений системы неравенств:

а) б)

  1. Решить графически задачу линейного программирования

min

  1. Составить экономико-математическую модель и решить графически задачу линейного программирования

Фирма выпускает изделия двух видов А и В. Изделия каждого вида обрабатывают на двух станках (I и II). Время обработки одного изделия каждого вида на станках, время работы станков за рабочую смену, прибыль фирмы от реализации одного изделия вида А и вида В занесены в таблицу:

Станки

Время обработки одного изделия, мин.

Время работы станка за смену, мин.

А

В

I

10

20

1300

II

4

13

720

Прибыль от одного изделия, грн.

0,3

0,9

Изучение рынка сбыта показало, что ежедневный спрос на изделия вида В никогда не превышает спрос на изделия вида А более чем на 40 единиц, а спрос на изделия вида А не превышает 90 единиц в день.

Определить план производства изделий, обеспечивающий наибольшую прибыль.

Симплексный метод решения задач линейного программирования

Симплексный метод – это метод последовательного улучшения плана. Этим методом можно решать задачи линейного программирования с любым количеством переменных и ограничений.

Этот метод включает в себя три основные этапа:

  1. Построение начального опорного плана.

  2. Правило перехода к лучшему (точнее, нехудшему) решению.

  3. Критерий проверки найденного решения на оптимальность.

При симплексном методе выполняются вычислительные процедуры (итерации) одного и того же типа в определенной последовательности до тех пор, пока не будет получен оптимальный план задачи или станет ясно, что его не существует.

1) Построение начального опорного плана.

Данную задачу линейного программирования необходимо сначала привести к каноническому виду; при этом правые части ограничений должны быть неотрицательными.

Признаком возможности построения начального опорного плана служит наличие в каждом ограничении-равенстве с неотрицательной правой частью базисной переменной.

Базисной называют плановую переменную, которая входит только в одно уравнение (а в другие не входит), и при этом имеет коэффициент, равный единице.

Пусть задача линейного программирования приведена к каноническому виду, и все уравнения системы ограничений имеют свою базисную переменную. Приравняв базисные переменные к соответствующим правым частям ограничений, а остальные переменные к нулю, получим опорное или базисное решение задачи.

Пример. Для данной задачи линейного программирования найти начальный опорный план (базисное решение).

max

Решение. Изменим знаки второго и третьего неравенств на противоположные, умножив каждое из них на –1. Система ограничений теперь будет такой:

В каждом ограничении слева добавим положительную переменную , соответственно запишем канонический вид задачи:

max

Характеристики

Тип файла
Документ
Размер
8,01 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее