47884 (597365), страница 2
Текст из файла (страница 2)
Представление отдельного пользователя о БД на внешнем уровне архитектуры называют внешним представлением. Т.о. внешнее представление - это содержимое БД, каким его видит отдельный пользователь. Например, сотрудник отдела кадров видит БД как набор записей о сотрудниках плюс набор записей о подразделениях. В общем случае внешнее представление состоит из множества экземпляров каждого типа внешней записи, которые не обязательно совпадают с хранимыми записями. Подъязык данных пользователя определен в терминах внешних записей. Каждое внешнее представление определяется средствами внешней схемы, которая, в основном, состоит из определений каждого типа записей во внешнем представлении.
-
Концептуальный уровень – концептуальное представление
Концептуальное представление - это представление всей информации БД в несколько более абстрактной форме по сравнению с физическим способом хранения данных. Концептуальное представление представляет данные такими, какими они есть на самом деле, а не такими, какими их вынужден видеть пользователь в рамках определенного языка. Концептуальное представление состоит из множества экземпляров каждого типа концептуальной записи, хотя в некоторых системах в способы концептуального представления данных могут быть другими - например, в виде объектов и связей между ними. Концептуальное представление определяется средствами концептуальной схемы, которая состоит из определений каждого типа концептуальных записей. При определении концептуальной схемы используется концептуальный язык определения данных, определения которого относятся только к содержанию информации. Концептуальное представление, т.о. обеспечивает независимость данных от способа их хранения.
-
Внутренний уровень – внутреннее представление
Внутреннее представление - это представление нижнего уровня всей БД. Оно состоит из множества экземпляров каждого типа внутренней записи. Внутренняя запись соответствует хранимой записи. Внутреннее представление не связано с физическим уровнем и в нем не рассматриваются физические записи. Внутреннее представление предполагает существование бесконечного линейного адресного пространства. Подробности отображения этого пространства на физические устройства хранения не включены в общую архитектуру из-за сильной зависимости от системы.
Внутреннее представление описывается с помощью внутренней схемы, которая описывается с помощью внутреннего языка определения данных.
Между тремя уровнями представлений имеются два уровня отображений. Отображения концептуального уровня на внутренний и внешнего уровня на концептуальный. Отображения сохраняют независимость данных случае внесения в структуру БД изменений.
-
Функции СУБД
-
Определение данных. СУБД должна допускать определения данных (внешние схемы, концептуальную и внутреннюю схемы, соответствующие отображения). Для этого СУБД включает в себя языковый процессор для различных языков определений данных.
-
Обработка данных. СУБД должна обрабатывать запросы пользователя на выборку, а также модификацию данных. Для этого СУБД включает в себя компоненты процессора языка обработки данных.
-
Безопасность и целостность данных. СУБД должна контролировать запросы и пресекать попытки нарушения правил безопасности и целостности.
-
Восстановление данных и дублирование. СУБД должна обеспечить восстановление данных после сбоев.
-
Словарь данных. СУБД должна обеспечить функцию словаря данных. Сам словарь можно считать системной базой данных, которая содержит данные о данных пользовательской БД, т.е. содержит определения других объектов системы. Словарь интегрирован в определяемую им БД и, поэтому, содержит описание самого себя.
-
Производительность. СУБД должна выполнять свои функции с максимальной производительностью.
-
-
Экспертные системы и базы знаний
-
В последнее время появилась необходимость хранения и использования слабоструктурированных данных, каковыми являются, например, человеческие знания в экспертных системах.
Экспертная система – система искусственного интеллекта, включающая знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений.
База знаний – семантическая модель, описывающая предметную область и позволяющая отвечать на такие вопросы из этой предметной области, ответы на которые в явном виде не присутствуют в базе. База знаний является основным компонентом интеллектуальных и экспертных систем.
Для хранения баз знаний в современных экспертных системах используются либо промышленные СУБД и специализированное промежуточное ПО, либо специализированное ПО.
В настоящем курсе основное внимание уделяется проектированию БД и организации хранения в них структурированной информации. Проектирование и создание баз знаний будет подробно рассматриваться в других курсах, связанных с изучением интеллектуальных систем.
Литература:
-
Дейт К.Дж. Введение в системы баз данных. –Пер. с англ. –6-е изд. –К. Диалектика, 1998. Стр. 36–75.
-
Модели БД
2.1 Обзор ранних (дореляционных) СУБД
2.2 Системы, основанные на инвертированных списках
2.3 Иерархическая модель
2.4 Сетевая модель
2.5 Основные достоинства и недостатки ранних СУБД
-
Обзор ранних (дореляционных) СУБД
Рассмотрим системы, исторически предшествовавшие реляционным, что необходимо для правильного понимания причин повсеместного перехода к реляционным системам. Кроме того, внутренняя организация реляционных систем во многом основана на использовании методов ранних систем. И, наконец, некоторое знание в области ранних систем будет полезно для понимания путей развития постреляционных СУБД.
Ограничимся рассмотрением только общих подходов к организации трех типов ранних систем, а именно, систем, основанных на инвертированных списках, иерархических и сетевых систем управления базами данных. Не будем касаться особенностей каких-либо конкретных систем, поскольку это привело бы к изложению многих технических деталей. Детали можно найти в соответствующей литературе.
Рассмотрим некоторые наиболее общие характеристики ранних систем:
-
Эти системы активно использовались в течение многих лет, дольше, чем используется многие из реляционных СУБД. На самом деле некоторые из ранних систем используются даже в наше время, накоплены громадные базы данных, и одной из актуальных проблем информационных систем является использование этих систем совместно с современными системами.
-
Все ранние системы не основывались на каких-либо абстрактных моделях. Понятие модели данных фактически вошло в обиход специалистов в области БД только вместе с реляционным подходом. Абстрактные представления ранних систем появились позже на основе анализа и выявления общих признаков у различных конкретных систем.
-
В ранних системах доступ к БД производился на уровне записей. Пользователи этих систем осуществляли явную навигацию в БД, используя языки программирования, расширенные функциями СУБД. Интерактивный доступ к БД поддерживался только путем создания соответствующих прикладных программ с собственным интерфейсом.
-
Навигационная природа ранних систем и доступ к данным на уровне записей заставляли пользователя самого производить всю оптимизацию доступа к БД, без какой-либо поддержки системы.
-
После появления реляционных систем большинство ранних систем было оснащено "реляционными" интерфейсами. Однако в большинстве случаев это не сделало их по‑настоящему реляционными системами, поскольку оставалась возможность манипулировать данными в естественном для них режиме.
-
-
Системы, основанные на инвертированных списках
-
К числу наиболее известных и типичных представителей таких систем относятся Datacom/DB компании Applied Data Research, Inc. (ADR), ориентированная на использование на машинах основного класса фирмы IBM, и Adabas компании Software AG.
Организация доступа к данным на основе инвертированных списков используется практически во всех современных реляционных СУБД, но в этих системах пользователи не имеют непосредственного доступа к инвертированным спискам (индексам).
-
Структуры данных
В базе данных, организованной с помощью инвертированных списков хранимые таблицы и пути доступа к ним видны пользователям. При этом:
-
Строки таблиц упорядочены системой в некоторой физической последовательности.
-
Физическая упорядоченность строк всех таблиц может определяться и для всей БД (так делается, например, в Datacom/DB).
-
Для каждой таблицы можно определить произвольное число ключей поиска, для которых строятся индексы. Эти индексы автоматически поддерживаются системой, но явно видны пользователям.
-
Манипулирование данными
Поддерживаются два класса операторов:
-
Операторы, устанавливающие адрес записи, среди которых:
-
прямые поисковые операторы (например, найти первую запись таблицы по некоторому пути доступа);
-
операторы, находящие запись в терминах относительной позиции от предыдущей записи по некоторому пути доступа.
-
Операторы над адресуемыми записями
Типичный набор операторов:
-
Найти первую запись таблицы T в физическом порядке;
-
Найти первую запись таблицы T с заданным значением ключа поиска K;
-
Найти запись, следующую за записью с заданным адресом в заданном пути доступа;
-
Найти следующую запись таблицы T в порядке пути поиска с заданным значением K;
-
Найти первую запись таблицы T в порядке ключа поиска K cо значением ключевого поля, большим заданного значения K;
-
Выбрать запись с указанным адресом;
-
Обновить запись с указанным адресом;
-
Удалить запись с указанным адресом;
-
Включить запись в указанную таблицу; операция генерирует адрес записи.
-
Ограничения целостности
Общие правила определения целостности БД отсутствуют. В некоторых системах поддерживаются ограничения уникальности значений некоторых полей, но в основном все возлагается на прикладную программу.
-
Иерархическая модель
Типичным представителем (наиболее известным и распространенным) является Information Management System (IMS) фирмы IBM. Первая версия появилась в 1968 г. До сих пор поддерживается много баз данных, что создает существенные проблемы с переходом как на новую технологию БД, так и на новую технику.
-
Иерархические структуры данных
Иерархическая БД состоит из упорядоченного набора деревьев; более точно, из упорядоченного набора нескольких экземпляров одного типа дерева.
Тип дерева (рис. 2.1) состоит из одного "корневого" типа записи и упорядоченного набора из нуля или более типов поддеревьев (каждое из которых является некоторым типом дерева). Тип дерева в целом представляет собой иерархически организованный набор типов записи.
рис. 2.1
Студенты
Ст_номер | Ст_фамилия | Ст_город |
Куратор
К_номер | К_фамилия | К_телефон |
Группа
Гр_номер | Гр_название | Гр_год_поступления |
Здесь (рис. 2.1) Группа является предком для Куратора и Студенты, а Куратор и Студенты – потомки Группа. Между типами записи поддерживаются связи.
База данных с такой схемой могла бы выглядеть следующим образом (рис. 2.2):
р
Студенты
1 | Иванов | Желтые Воды | ||||
3 | Петров | Кривой Рог |
Куратор
2 | Иванов | 6-39-45 |
Группа
1 | А-98-51 | 1998 |
Все экземпляры данного типа потомка с общим экземпляром типа предка называются близнецами. Для БД определен полный порядок обхода – сверху-вниз, слева-направо.
В IMS использовалась оригинальная и нестандартная терминология: "сегмент" вместо "запись", а под "записью БД" понималось все дерево сегментов.
-
Манипулирование данными
Примерами типичных операторов манипулирования иерархически организованными данными могут быть следующие:
-
Найти указанное дерево БД (например, отдел 310);
-
Перейти от одного дерева к другому;
-
Перейти от одной записи к другой внутри дерева (например, от отдела - к первому сотруднику);
-
Перейти от одной записи к другой в порядке обхода иерархии;
-
Вставить новую запись в указанную позицию;
-
Удалить текущую запись.
-
Ограничения целостности
Автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя. Заметим, что аналогичное поддержание целостности по ссылкам между записями, не входящими в одну иерархию, не поддерживается (примером такой "внешней" ссылки может быть содержимое поля Каф_Номер в экземпляре типа записи Куратор).
В иерархических системах поддерживалась некоторая форма представлений БД на основе ограничения иерархии. Примером представления приведенной выше БД может быть иерархия, изображенная на рис. 2.3.