47884 (597365), страница 9

Файл №597365 47884 (Организация баз данных) 9 страница47884 (597365) страница 92016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

Course—>>Teacher

Course—>>Text

Обратите внимание на двойную стрелку, которая в многозначной зависимости A—>>B означает, что "B многозначно зависит от A" или "A многозначно определяет B".

Пусть A, B и C являются произвольными подмножествами множества атрибутов отношения R. Тогда B многозначно зависит от A, что символически выражается записью

А—>>В

тогда и только тогда, когда множество значений B, соответствующее заданной паре (значение A, значение C) отношения R, зависит только от A, но не зависит от C.

Для данного отношения R{A, B, C} многозначная зависимость A—>>B выполняется тогда и только тогда, когда также выполняется многозначная зависимость A —>> C. Таким образом, многозначные зависимости всегда образуют связанные пары и потому их обычно представляют вместе в символическом виде:

А—>>В|С.

Для рассматриваемого примера такая запись будет иметь следующий вид:

Course—>>Teacher|Text

Возвращаясь к исходной задаче с отношением СТХ, теперь можно отметить, что описанная ранее проблема с отношением типа СТХ возникает из-за того, что оно содержит многозначные зависимости, которые не являются функциональными. (Следует отметить совсем неочевидный факт, что именно наличие таких МЗ требует вставлять два кортежа, когда необходимо добавить данные еще об одном преподавателе физики.) Проекции СТ и СХ не содержат многозначных зависимостей, а потому они действительно представляют собой некоторое усовершенствование исходной структуры. Поэтому было бы желательно заменить отношение СТХ двумя этими проекциями. Это можно сделать, исходя из теоремы Фейгина, которая приведена ниже.

Теорема Фейгина (эта теорема является более строгой версией теоремы Хеза). Пусть А, В и С являются множествами атрибутов отношения R{A, В, С}. Отношение R будет равно соединению его проекций {А, В} и {А, С} тогда и только тогда, когда для отношения R выполняется многозначная зависимость А—>>В|С.

    1. Четвертая нормальная форма

Отношение R находится в четвертой нормальной форме (4НФ) тогда и только тогда, когда существуют такие подмножества А и В атрибутов отношения R, что выполняется (нетривиальная) многозначная зависимость А —>> В. Тогда все атрибуты отношения R также функционально зависят от атрибута A.

    1. Зависимости соединения

До сих пор предполагалось, что единственной операцией в процессе декомпозиции является замена данного отношения (при декомпозиции без потерь) двумя его проекциями. Это допущение успешно выполнялось вплоть до определения 4НФ. Однако существуют отношения, для которых нельзя выполнить декомпозицию без потерь на две проекции, но которые можно подвергнуть декомпозиции без потерь на три или более проекции.

На рисунке представлен пример конкретного набора данных, соответствующих некоторому моменту времени. Однако, если данное отношение удовлетворяет некоторому не зависящему от времени ограничению, то 3-декомпозируемость отношения TSG может быть более фундаментальным и не зависящим от времени свойством, т.е. свойством, которое удовлетворяется для всех допустимых значений данного отношения. Для того чтобы понять, каким должно быть такое отношение, прежде всего отметим, что утверждение "отношение TSG равно соединению трех проекций TS, SG и TG" эквивалентно следующему утверждению:

Если пара (t1,s1) находится в отношении TS и пара (s1,g1) находится в отношении SG и пара (t1,g1) находится в отношении TG то тройка (t1,s1,g1) находится в отношении TSG.

TSG

TEACHER

SUBJECT

GROUP

Иванов

Математика

А-98-51

Иванов

Физика

Б-00-51

Петров

Математика

А-99-51

Петров

Физика

А-98-51

TS

SG

TG

TEACHER

SUBJECT

SUBJECT

GROUP

TEACHER

GROUP

Иванов

Физика

Математика

А-99-51

Иванов

А-98-51

Иванов

Математика

Математика

А-98-51

Иванов

Б-00-51

Петров

Физика

Физика

А-98-51

Петров

А-99-51

Петров

Математика

Физика

Б-00-51

Петров

А-98-51

Соединение по Subject

TEACHER

SUBJECT

GROUP

Иванов

Физика

А-98-51

Иванов

Физика

Б-00-51

Иванов

Математика

А-99-51

Иванов

Математика

А-98-51

Петров

Физика

А-98-51

Петров

Физика

Б-00-51

Петров

Математика

А-99-51

Петров

Математика

А-98-51

Соединение по комбинации Teacher и Group

Исходное TSG

рис. 7.4 Отношение TSG является соединением трех бинарных проекций.

Исходя из этих заключений можно сказать, что пара (t1,s1) присутствует в отношении TS тогда и только тогда, когда тройка (t1, s1, g2) присутствует в отношении TSG для некоторого значения g2. Тогда приведенное выше утверждение можно переписать в виде ограничения, накладываемого на отношение SPJ:

Если (t1,s1,g2), (t2,s1,g1), (t1,s2,g1) находятся в отношении TSG то (t1,s1,g1) также находится в отношении TSG.

Если это утверждение выполняется всегда, т.е. для всех допустимых значений отношения TSG, то тем самым будет получено независящее от времени (хотя и несколько странное) ограничение для данного отношения. Обратите внимание на циклическую структуру этого ограничения. Отношение будет n-декомпозируемым для n>2 тогда и только тогда, когда оно удовлетворяет некоторому циклическому ограничению.

Циклическое ограничение с практической точки зрения обозначает, что, например, если:

  1. Петров преподает математику;

  1. математика преподается в А-98-51;

  2. Петров преподает в А-98-51

то:

  1. Петров преподает математику в А-98-51.

Обратите внимание, что из взятых вместе условий (1), (2) и (3) не следует (4).

Пусть R является отношением, а А, В,..., Z— произвольными подмножествами множества атрибутов отношения R. Отношение R удовлетворяет зависимости соединения

* (A, B, ..., Z)

тогда и только тогда, когда оно равносильно соединению своих проекций с подмножествами атрибутов А, В, ..., Z.

Отсюда ясно, что отношение TSG с зависимостью соединения *(TS, SG, TG) может быть 3-декомпозируемым. Однако следует ли выполнять такую декомпозицию? По всей видимости, да, так как отношение TSG характеризуется многочисленными аномалиями обновления, которые можно устранить с помощью 3-декомпозиции. Пример был приведен при определении циклического ограничения, из-за наличия которого, в отношении TSG должен присутствовать следующий кортеж (рис. 7.5)

TEACHER

SUBJECT

GROUP

Петров

Математика

А-98-51

рис. 7.5 Дополнительный кортеж.

Также теорема Фейгина может быть сформулирована следующим образом: отношение R{A, В, С} удовлетворяет зависимости соединения *(АВ, АС) тогда и только тогда, когда оно удовлетворяет многозначной зависимости А —>> В | С.

Эту теорему можно использовать в качестве определения многозначной зависимости, отсюда следует, что многозначная зависимость является частным случаем зависимости соединения. Более того, из определения зависимости соединения следует, что из всех возможных форм это наиболее общая форма зависимости.

Возвращаясь к рассматриваемому примеру, можно обнаружить следующую проблему: отношение TSG содержит зависимость соединения, которая не является ни многозначной, ни функциональной зависимостью. Можно также заметить, что рекомендуется декомпозировать такое отношение на меньшие компоненты, а именно на проекции, заданные зависимостью соединения. Такой процесс декомпозиции может повторяться до тех пор, пока все результирующие отношения не будут находиться в пятой нормальной форме.

    1. Пятая нормальная форма

Отношение R находится в пятой нормальной форме (5НФ), которая также называется проекционно-соединительной нормальной формой, тогда и только тогда, когда каждая зависимость соединения в отношении R подразумевается потенциальными ключами отношения R.

Отношение TSG не находится в 5НФ. Оно удовлетворяет некоторой зависимости соединения, а именно ЗД-ограничению, которое, конечно, не подразумевается его единственным потенциальным ключом. Наоборот, после 3-декомпозиции проекции TS, SG и GT находятся в 5НФ, поскольку для них вовсе нет зависимостей соединения.

      1. Зависимости соединения, подразумеваемой потенциальными ключами

Рассмотрим простой пример, в котором дано отношение с данными студентов Students с потенциальным ключом StNo. Такое отношение удовлетворяет нескольким зависимостям соединения, например зависимости

* ( (StNo, GrNo, StName), (StNo, CityNo) ).

Это значит, что отношение Students равносильно соединению его проекций с атрибутами {StNo, GrNo, StName} и {StNo, CityNo}, а потому может быть подвергнуто декомпозиции без потерь на указанные проекции. (Заметьте, что его не следует, а можно подвергнуть декомпозиции.) Существование этой зависимости соединения следует (или подразумевается) из того, что StNo является потенциальным ключом (в действительности это следует из теоремы Хеза).

В заключение заметим, что, как следует из определения 5НФ, она является окончательной нормальной формой по отношению к проекции и соединению. Таким образом, гарантируется, что отношение в пятой нормальной форме не содержит аномалий, которые могут быть исключены разбиением на проекции.

    1. Итоговая схема процедуры нормализации

Пусть дано отношение R, которое находится в 1НФ (или может быть приведено к такой форме после выравнивания исходной ненормализованной структуры), вместе с некоторыми ограничениями (функциональными зависимостями, многозначными зависимостями и зависимостями соединения). Тогда основная идея этой технологии состоит в систематическом приведении отношения R к набору меньших отношений, который в некотором заданном смысле эквивалентен отношению R, но более предпочтителен. Каждый этап процесса приведения состоит из разбиения на проекции отношений, полученных на предыдущем этапе, таким образом, чтобы проекции находились в нормальной форме более высокого порядка, чем первоначальное отношение.

Из приведенных выше правил можно выделить некоторые особенности.

  1. Прежде всего, процесс разбиения на проекции на каждом этапе должен быть выполнен без потерь и с сохранением зависимости (там, где это возможно).

  2. Необходимо подчеркнуть тот факт, что могут существовать соображения, по которым нормализацию не следует выполнять полностью.

Пятая нормальная форма является окончательной в том смысле, что дальнейшее устранение аномалий невозможно путем разбиения исходного отношения на проекции. Существуют нормальные формы более высоких порядков, однако они крайне редко встречаются на практике и в данном курсе не рассматриваются.

Литература:

  1. Дейт К.Дж. Введение в системы баз данных. –Пер. с англ. –6-е изд. –К. Диалектика, 1998. Стр. 309–328.

  2. Проектирование БД методом сущность-связь. ER-диаграммы

8.1 Возникновение семантического моделирования

8.2 Основные понятия метода

Характеристики

Тип файла
Документ
Размер
4,23 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее