47653 (597350), страница 4
Текст из файла (страница 4)
2. Внедиагональные элементы матрицы Yy отрицательны и Yjk равны сумме проводимостей ветвей, включенных между j-м и k-м узлами.
3. Произвольный элемент вектора тока Jy с номером j Jj равны сумме узловых токов, втекающих в j-узел.
Тогда l-я ветвь, направленная от узла j к узлу k, приводит к следующему вкладу в матрицы Yy и Jy:
Так составляются уравнения по методу узловых потенциалов последовательным перебором топологического списка ветвей схемы.
Потенциалы узлов k равны напряжениям Vk между q-1 узлом и опорным узлом.
3.5 Контурные уравнения
Уравнения на основе второго закона Кирхгофа
CU=CE,
уравнение закона Ома
U=ZI
и соотношение
подставим в контурное уравнение и получим:
.
Токи в обобщенных ветвях определим через контурные токи:
.
Так получаются контурные уравнения:
. (3.15)
Если ввести обозначения
Zk=СZСT – матрица контурных сопротивлений,
Ek= СE-СZJ – матрица контурных ЭДС, то контурные уравнения запишутся в виде:
. (3.15а)
В матричной форме решения для контурных токов
(3.16)
выражают принцип наложения.
3.6 Независимые токи и напряжения
Запишем уравнения ЗКТ, используя матрицу главных сечений:
DI=0,
где I – вектор токов ветвей.
Разделив матрицу на блоки, получим:
или
IP= – FIX. (3.17)
Токи ребер графа выражаются через токи хорд:
(3.17а)
Токи хорд можно рассматривать как независимые переменные.
Уравнения, составленные по ЗКН,
CU=0,
где U – вектор напряжений на всех ветвях, использовав блочное представление матрицы С, запишем:
.
Напряжение на ветвях хорд выражаются через напряжения на ветвях ребер:
UX=FTUP. (3.18)
Напряжение на ветвях можно представить:
.
Из последнего, с учетом D=[lF], следует:
U = DTUP. (3.18а)
Напряжения, соответствующие ребрам графа, можно рассматривать как независимые переменные.
3.7 Типы ветвей
Y-ветвью называют ветвь, представленную проводимостью и описываемую компонентными уравнениями для токов. Ветвь включает проводимости, ветвь ИТУН, ветвь ИТУТ, независимые источники тока (рис. 3.10).
,
где
- коэффициент передачи по току;
gij – передаточная проводимость.
В матричной форме уравнения для Y ветвей:
. (3.19)
В матрицу проводимостей Y включены проводимости ветвей и и передаточные проводимости. К этим уравнениям присоединяются уравнения многополюсников в Y-форме.
IM=YMUM.
Рис. 3.10.
Z-ветви характеризуются сопротивлениями и описываются напряжениями.
Обобщенная 2-полюсная Z-ветвь показана на рис. 3.11:
Рис. 3.11.
,
где rji – передаточное сопротивление;
– коэффициент передачи по напряжению.
Уравнение Z-ветвей в матричной форме имеет вид:
UZ=ZIZ+KUUY-E. (3.20)
В Z матрицу входят сопротивления ветвей и передаточные сопротивления. Уравнения Z-ветвей дополняются уравнениями многополюсников в Z-форме.
UM=ZMIM
Компонентные уравнения обобщенных ветвей:
. (3.21)
3.8 Модифицированный метод узловых потенциалов
(Расширенное узловое уравнение)
В расширенном узловом уравнении переменными являются потенциалы узлов и токи Z-ветвей.
Компонентные уравнения, связывающие токи и напряжения Y- и Z-ветвей:
IY=YUY+KIIZ-J
UZ=ZIZ+KUUY-E.
Если первые номера присваиваются Y-, а последующие Z-ветвям, то матрица соединений и вектор-столбец токов могут быть представлены двумя подматрицами:
;
,
а уравнение по первому закону Кирхгофа примет вид:
. (3.22)
Преобразуем это уравнение с учетом закона Ома для Y-ветвей:
.
Тогда, принимая во внимание , получим:
. (3.23)
Закон Ома для Z-ветвей:
с учетом приводит к уравнению
. (3.24)
Уравнения (3.23) и (3.24) объединяются в одно уравнение, получаем расширенное узловое уравнение (РУУ):
. (3.25)
Поставив I1 и I3 в первое уравнение, получим расширенное узловое уравнение:
или в матричной форме:
.
Учитывая, что ветви 1, 2, 3, 4 – Y-ветви, а 5, 6 – Z-ветви, запишем матрицу соединений, разделив ее на Ay- и Az-подматрицы:
= [Ay, Az].
Приведем матрицы проводимостей ветвей Y, сопротивлений Z и коэффициентов передачи КI и КU:
,
,
,
.
Найдем необходимые произведения матриц:
.
Теперь расширенные узловые уравнения: имеют вид:
.
3.9 Вычисления с комплексными числами в MathCAD
В MathCAD определена мнимая единица j:
,
и, следовательно, определены комплексные числа и операции с ними. Для того, чтобы ввести в MathCAD мнимую единицу, следует набрать на клавиатуре <1><j> (в рабочем документе будет отображен символ i, который MathCAD при таком способе ввода воспринимает как мнимую единицу).
Комплексные числа записывают в MathCAD в общепринятой математической нотации. Это означает, что выражение z=a+bj, где а и b – действительные числа, воспринимается как комплексное число, действительная часть которого равна а, а мнимая – b.
В MathCAD можно определять комплексные числа в алгебраической, тригонометрической и показательной форме; однако при символьных вычислениях (с помощью знака символьных преобразований или ключевого слова complex) комплексное число все равно отображается в алгебраической форме.
Для вычислений с комплексными числами в MathCAD определены все арифметические операции, а также специфические для комплексной арифметики операции:
-
Re(z) – действительная часть комплексного числа z;
-
Im(z) – мнимая часть комплексного числа z;
-
аrg(z) – главное значение аргумента комплексного числа z;
-
– модуль
комплексного числа Z;
-
=a-jb – число, комплексно сопряженное к числу z.
В MathCAD можно вычислять значения элементарных функций, как действительного, так и комплексного аргумента. Однако при вычислении значений многозначных функций вычисляются только главные значения. Для того, чтобы вычислить все значения многозначных функций, пользователь должен определить их в рабочем документе соответствующими выражениями.
Если уравнение имеет комплексные корни, то MathCAD вычисляет не только действительные, но и комплексные корни.
3.10 Расчет электрических цепей с трансформаторами
Уравнения двухобмоточного трансформатора
Рис. 3.14
могут быть представлены в виде уравнений четырехполюсника в Z-форме:
(3.26)
При выбранном направлении токов и напряжений
.
Цепь с каскадным соединением трансформаторов
Если известно сопротивление вторичной цепи , можно из второго уравнения (3.26) выразить I2 через I1 и таким образом пересчитать сопротивление вторичной цепи в первичную:
. (3.27)
Пересчет сопротивления Z2 из вторичной цепи в первичную дает возможность при известном напряжении на входе трансформатора определить ток первичной цепи. Для определения тока и напряжения вторичной цепи можно воспользоваться уравнением четырехполюсника в В-форме:
, (3.28)
Литература
-
Теоретические основы электротехники: В 3 т. Учебник для вузов. Том 1, 2. – 4-е изд. / К.С. Демирчян, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чечурин. – СПБ Питер, 2004. – 463, 576 с.
-
Основы теории цепей: Учебник для вузов. Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.
-
К.С. Демирчян, П.А. Бутырин. «Моделирование и машинный расчет электрических цепей». – М.: ВШ., 1988. – 335 с.
-
И. Влах, К. Сингхал. Машинные методы анализа и проектирование электронных схем. – М.: Радиосвязь, 1988. – 560 с.
-
Данилов Л.В. и др. Теория нелинейных электрических цепей (Л.В. Данилов, П.Н. Матханов, Е.С. Филиппов). – Л.: Энергоатомиздат, Ленинград. отд-ие, 1999. – 256 с.
-
Леон О. Чуа и Пен-Мин Лиин. Машинный анализ электронных схем (алгоритмы и вычислительные методы). – М.: Энергия, 1980. – 640 с.
-
Плис А.И., Сливина Н.А. MathCAD. Математический практикум для инженеров и экономистов: учеб. Пособие – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2003. – 656 с.
-
Шабалин В.Д. Машинное моделирование электрических цепей. – Кострома: Изд. Костромской ГСХА, 200. – 80 с.
-
Шабалин В.Д. Пересчет сопротивления нагрузки трехфазной цепи, содержащей трансформатор. / Актуальные проблемы науки в агропромышленном комплексе: материалы 58-й международной научно-практической конференции: в 3 т. Т. 3. – Кострома: КГСХА, 2007. с. 184–185.