47653 (597350), страница 2

Файл №597350 47653 (Моделирование электрических цепей в системе Mathcad) 2 страница47653 (597350) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

cols(A) – вычисление числа столбцов в матрице А;

max(A) – вычисление наибольшего элемента в матрице А;

min(A) – вычисление наименьшего элемента в матрице А;

tr(A) – вычисление следа квадратной матрицы А*;

rank(A) – вычисление ранга матрицы А;

norm1 (A), norm2 (A), norme(A), normi(A) – вычисление норм квадратной матрицы А.

Функции, реализующие численные алгоритмы решения задач линейной алгебры:

rref(A) – приведение матрицы к ступенчатому виду с единичным базисным минором (выполняет элементарные операции со строками матрицы);

eigenvals(A) – вычисление собственных значений квадратной матрицы А;

eigenvecs(A) – вычисление собственных векторов квадратной матрицы А; значением функции является матрица, столбцы которой есть собственные векторы матрицы А, порядок следования которых отвечает порядку следования собственных значений, вычисленных функцией eigenvals(A);

eigenvec (A, l) – вычисление собственного вектора матрицы А, отвечающего собственному значению l;

lsolve (A, b) – решение системы линейных уравнений Ax=b.

Задание 1. Определить матрицу А размером 33 с помощью панели Matrix и трансформировать ее.

Создать матрицу В размером 33 с помощью функции Matrix.

Вычислить суммы А+В и В+А, произведения АВ и ВА, исследовать матрицы на симметричность.

Задать единичную матрицу Е 3-го порядка, вычислить произведения ЕА и АЕ.

Сформировать вектор v, представляющий 2-й столбец матрицы А, и диагональную матрицу diag(v).

Определить матрицы С и D, используя функции augment (A, V) и staсk (A, VT).

Решить систему АХ=V, используя обратную матрицу А-1 и функцию isolve (A, b).


2. Основные элементы схемы и понятия

2.1 Двухполюсные пассивные элементы

Основными пассивными (двухполюсными) элементами схемы являются сосредоточенные, не зависящие от времени резисторы, индуктивности и емкости.

Резистором называют элемент, для которого текущий ток i и приложенное напряжение u связаны законом Ома:

(2.1)

где R – сопротивление резистора, измеряемое в Омах (Ом), а G – проводимость, измеряемая в Сименсах (См). Напряжение u измеряется в Вольтах (В), а ток i в Амперах (А).

Положительное направление показано на рис. 2.1:

Рис. 2.1

Индуктивность обозначается L и измеряется в Генри (Гн):

Рис. 2.2

Для линейной индуктивности напряжение и ток связаны соотношением

(2.2)

Емкость обозначается с и измеряется в Фарадах (Ф):

Рис. 2.3

Напряжение и ток в емкости описываются уравнением

(2.3)

Соотношения (2.1), (2.2), (2.3) определяют характеристики компонент (схемы), их называют компонентными уравнениями.

Следует заметить, что дифференциальные соотношения (2.2), (2.3) между токами и напряжениями на индуктивности и емкости преобразованием Лапласа преобразуются в алгебраические:

.

Начальные значения токов в индуктивностях и напряжений на емкостях учитываются дополнительными источниками.

Индуктивные и емкостные сопротивления определяются следующим образом:

. (2.4)

Для расчета установившегося режима в линейных цепях при синусоидальном воздействии полагаем S= и пренебрегаем начальными токами iL (0+)=0 и напряжениями uc(0+)=0.

2.2 Независимые источники

Независимый источник напряжения (ЭДС) обеспечивает заданное значение напряжения на его полюсах независимо от того, какой ток течет через него (рис 2.4):

Рис. 2.4

Независимый источник тока создает заданный ток, а напряжение на его полюсах зависит от цепи, подключенной к источнику (рис 2.5):

Рис. 2.5

2.3 Схемы замещения реальных источников

Независимые источники идеальны и физически нереализуемы. Однако они могут быть использованы для моделирования реальных источников при добавлении других идеальных элементов. Одна из моделей источника напряжений, показанная на рис. 2.6, а, называется схемой Тавенена. Здесь Zb моделирует внутреннее сопротивление источника (U=E при I=0, , где Iкз - ток при U=0).

Рис. 2.6

Модель реального источника на рис. 2.6, б, где сопротивление Zb включен параллельно идеальному источнику тока, называется схемой Нортона, а – ток источника тока.

2.4 Зависимые источники

1. Источник напряжения, управляемый напряжением или идеальный усилитель (ИНУН). Уравнения этого четырехполюсника:

i1=0 u2=Kuu1,

где Кu – коэффициент передачи по напряжению

В матричной форме:

(2.5)

На рис. 2.7 приведена схема ИНУН:

Рис. 2.7.

2. Источник тока, управляемый напряжением (ИТУН). Уравнения этого четырехполюсника:

i1=0 i2=gu1,

где g – передаточная проводимость.

В матричной форме:

. (2.6)

Его схема приведена на рис. 2.8:

Рис. 2.8.

3. Источник напряжения, управляемый током (ИНУТ). Его уравнения:

u1=0 u2=ri1

или

, (2.7)

где r передаточное сопротивление.

На рис. 2.9 приведена схема ИНУТ:

Рис. 2.9.

4. Источник тока, управляемый током (ИТУТ) или идеальный усилитель тока (рис. 2.10). Его уравнения:

u1=0 i2= Кi i1

или

, (2.8)

где Кi – коэффициент передачи по току.

На рис. 2.10 приведена схема ИТУТ:

Рис. 2.10

2.5 Элементарные четырехполюсники

  1. Идеальный трансформатор определяется с помощью уравнений

U1=nU2, I1=

или

(2.9)

На рис. 2.11 приведена схема трансформатора (а) и его эквивалентная схема (б):

(а) Рис. 2.11 (б)

Гиратор определяется как четырехполюсник, для которого справедливы уравнения:

I1=-g2U2 I2=g1U1. (2.10)

Гиратор можно представить с помощью двух ИТУН (рис. 2.12):

Рис. 2.12

Если постоянные гирации равны, т.е. g1=g2=g, то гиратор называется идеальным. Уравнения (2.10) можно переписать в форме:

(2.11)

а схема гиратора приведена на рис. 2.13:

Рис. 2.13.

2.6 Операционный усилитель

К активным многополюсникам относится операционный усилитель (ОУ), имеющий дифференциальный вход с очень большим входным сопротивлением, малое выходное сопротивление и высокий коэффициент усиления. Условное обозначение ОУ и его схема замещения приведены на рис. 2.14:

Рис. 2.14.

2.7 Законы электрических цепей

Ток и напряжение относятся к некоторой обобщенной k-ой ветви, содержащей источник тока и источник ЭДС (рис. 2.15):

Рис. 2.15.

Согласно первому закону Кирхгофа применительно к узлу m’ (или n’) на рисунке, имеем:

(2.12)

Согласно второму закону Кирхгофа для контура, проходящего по проводникам ветви k от узла m к n, и по внешнему пространству – от узла n к m, имеем:

(2.13)

Последние выражения связывают токи и напряжения в обобщенных ветвях графа, изображаемых в графе схемы отрезками, с токами и напряжениями ветвей и источниками тока и ЭДС, когда таковые содержатся в исходной схеме.

При записи уравнений, согласно законам Кирхгофа для графа схемы будем иметь в виду, что в эти уравнения войдут токи и напряжения обобщенных ветвей схемы цепи. Следовательно, для графа схемы можно написать:

и или и . (2.14)

В случае установившихся процессов мгновенные значения токов и напряжений заменяются их комплексными действующими значениями, при применении преобразования Лапласа их операторными изображениями (хотя в последнем случае необходимо начальные условия токов на индуктивностях и напряжения на емкостях учитывать дополнительными источниками), и в этом случае уравнения (2.14) принимают вид:

.(2.14а)

2.8 Функции цепи. Полюсы и нули

Функции цепи определяются для схем, не имеющих начальных напряжений на емкостях и токов в индуктивностях.

Используя символические выражения ZL=sL, YC=sC и допуская, что существует единственный источник, определяем функции цепи следующим образом:

– входное сопротивление; (2.15)

– входная проводимость; (2.16)

– коэффициент передачи по напряжению; (2.17)

– коэффициент передачи по току; (2.18)

– передаточное сопротивление; (2.19)

– передаточная проводимость. (2.20)

Если цепь состоит из сосредоточенных элементов, то все функции цепи представляют собой рациональные функции от S:

. (2.21)

Полином в числителе имеет n корней zi, называемых нулями, а полином в знаменателе – m корней рi, называемых полюсами.

С точностью до постоянного множителя k расположение нулей и полюсов на комплексной плоскости полностью определяет свойства функции цепи.

Отклик линейной схемы на синусоидальное воздействие можно рассчитать, положив в выражении для функции цепи S=j, тогда

, (2.22)

где А(ω) – четная, а В(ω) – нечетная функции ω.

Модуль функции F:

. (2.23)

Фазовый сдвиг определяется по формуле:

. (2.24)

Характеристики

Тип файла
Документ
Размер
9,88 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6565
Авторов
на СтудИзбе
298
Средний доход
с одного платного файла
Обучение Подробнее