25065 (597068), страница 3
Текст из файла (страница 3)
Q2 = Q3-6 +Q2-6 +Q1-6 +Q3-5 +Q2-5+Q1-5 =43,9+35,0+0+27,5+0+18,3=124,7 тис. т
Qn = Q1 +Q2 = 174,1 + 124,7 = 298,8 тис. т.
За даними табл.10 Q n відповідає вантажонапруженості для дороги 4-ої категорії, відповідно для 4-ої категорії приймаються за даними табл.10 і значення аD і bT , які потрібні для розрахунків.
Тоді за формулою (4) :
F (Qn) = 1 +
Обчислюємо значення кута примикання ( формула 3 ) :
cos = [ 174,1 – 124,7 0,10 ] / ( 298,8 2,71 0,08 ) = 0,075 ;
= 85 o 42` .
Значення Тосн та Тпід в формулі ( 3 ) беруться із табл.10 відповідно до різниці Q1- Q2 , якій відповідає Тосн = 0,10 для 5-ої категорії дороги, та зна-чення Qn, якому відповідає Тосн = 0,08 для 4-ої категорії дороги. Кут відкладається між ланками (3-4) та (4-6) простою побудовою. Своєю вершиною кут направляється в сторону більшого вантажопотоку. Ланка (4-6) механічно ділиться на дві ланки : (4-7) та (7- 6 ), довжина яких визначається за масштабом і, відповідно, складає 5,0 км та 10,6 км. Отже, замість ланки (3-4) утворилася нова ланка (3-7) завдовжки 15,8 км.
Для визначення необхідності додаткових ланок виконують перевірку :
lф / li-j [ 1+
] , (7)
де lф , li-j - довжина відповідного маршруту за ланками найкоротшої пов’язуючої мережі та довжина додаткової ланки, км;
Q – кількість вантажів, які необхідно перевезти між точками, тис. м;
Кпр – коефіцієнт прискорення перевезень, Кпр = 0,7 – 0,8.
Якщо ліва частина нерівності є більшою за праву – додаткова ланка приймається, якщо ні – в ній немає необхідності. Можливі додаткові ланки для побудованої найкоротшої пов’язуючої мережі вказані на рис. 4.
4
7 2
6
3
5 1
Рис. 4. Схема мережі із можливими додатковими ланками.
Необхідність введення додаткових ланок розглядається для кожного окремого незамкненого контуру найкоротшої пов’язучої мережі. Розглянемо додаткову ланку між точками 3 та 6, відстань між якими 18,0 км, а вантажонапруженість 43,9 тис. т. При відсутності дороги між точками 3 та 6 вантажі між ними слід перевозити по ланках 3-7 і 7-6, довжиною відповідно 15,8 км та 10,6 км , тобто довжина маршруту за ланками найкоротшої пов’язучої мережі : lср =15,8км + 10,6км = 26,4км.
Тоді ліва частина нерівності (7):
lф / l3-6 = 26,4 / 18 =1,46 ;
Права частина нерівності (7):
Оскільки 1,46 < 2,79 , то додаткової ланки влаштовувати не потрібно.
Розглянемо додаткову ланку між точками 3 та 5 , відстань між якими l 3-5 = 16,6км , а вантажонапруженість 27,5т. За відсутності дороги між точками 3 та 5 вантажі між ними будуть перевозитися за маршрутом 3-7, 7-6, 6-5, довжиною lф = 15,8км + 10,6км + 15,2км = 41,6 км.
Ліва частина нерівності (7) : lф / l3-5 = 41,6 / 16,6 =2,50 ;
права частина нерівності (7) :
Оскільки 2,50 < 3,37 , то додаткова ланка не потрібна.
Розглянемо додаткову ланку між точками 1 та 5 , відстань між якими l1-5 = 27,0км , а вантажонапруженість 18,3тис.т. За відсутності дороги вантажі слід перевозити за маршрутом 1-3 , 3-7 , 7-6 , 6-5 , довжина якого lф = 17,0км + 15,8км + 10,6км + 15,2км = 58,6 км.
58,6 / 27,0
[ 1+
] ;
2,17 < 4 , отже додаткової ланки влаштовувати не потрібно.
Розглянемо додаткову ланку 2-4 , l2-4 = 22,8км ; вантажонапруженість 19,1 тис. т.
lф = l2-3 + l3-7 + l7-4 = 18,0км + 15,8км + 5,0км = 38,8км
38,8 / 22,8
[ 1+
] ;
1,7 < 3,83, додаткова ланка не потрібна.
Остаточний вигляд дорожньої мережі приведений на рис.5
Додаткова ланка 1-2 не розглядається, оскільки по ній не здійснюються перевезення (табл. 1).
4
7 2
6
3
5 1
Рис.5. Остаточний вигляд раціональної дорожньої мережі.
II. Тип 2.
Задачі типу 2 – це задачі, які виникають при обробці даних та аналізі результатів транспортних вишукувань, а саме – вимірювання миттєвих швидкостей. Результати визначення миттєвих швидкостей записуються у вигляді таблиці 11. Завдання полягає у визначенні швидкостей 15% , 50% та 85% забезпеченості.
Таблиця 11. Розподіл миттєвих швидкостей руху
Види транспортних засобів (ТЗ) | Швидкості руху , км / г | Всього ТЗ | ||||||||||||||
15 20 | 20 25 | 25 30 | 30 35 | 35 40 | 40 45 | 45 50 | 50 55 | 55 60 | 60 65 | 65 70 | 70 75 | 75 80 | 80 85 | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
Легкові авт. | 5 | 7 | 9 | 10 | 15 | 20 | 18 | 20 | 16 | 17 | 10 | 7 | 5 | 2 | 161 | |
Вантажні авт | 2 | 8 | 10 | 7 | 8 | 5 | 3 | 3 | 2 | 2 | 1 | - | - | - | 51 | |
Автопоїзди | 2 | 2 | 1 | 2 | 3 | 2 | 1 | - | - | - | - | - | - | - | 13 | |
Автобуси | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 5 | 1 | - | - | - | - | - | 36 | |
Мотоцикли | - | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | 3 | |
Транспортний потік, авт. | 10 | 20 | 24 | 24 | 31 | 34 | 30 | 28 | 19 | 19 | 11 | 7 | 5 | 2 | 264 | |
Частість,% | 4 | 8 | 9 | 9 | 12 | 13 | 11 | 10 | 7 | 7 | 4 | 3 | 2 | 1 | 100 |
Підраховуються кількість автомобілів кожного виду (стовпчик 16), кількість та відсоток автомобілів, які рухаються в кожному із швидкісних діапазонів (стовп. 2-15) для транспортного потоку. Результати підрахунків заносяться в табл. 12.
Таблиця 12. Аналіз швидкостей руху
Швидкості руху, км / г | Частота , кільк. авт. | Частість , % | Накопичена частість , % |
15 – 20 | 10 | 4 | 4 |
20 – 25 | 20 | 8 | 12 |
25 – 30 | 24 | 9 | 21 |
30 – 35 | 24 | 9 | 30 |
35 – 40 | 31 | 12 | 42 |
40 – 45 | 34 | 13 | 55 |
45 - 50 | 30 | 11 | 66 |
50 – 55 | 28 | 10 | 76 |
55 - 60 | 19 | 7 | 83 |
60 – 65 | 19 | 7 | 90 |
65 – 70 | 11 | 4 | 94 |
70 – 75 | 7 | 3 | 97 |
75 – 80 | 5 | 2 | 99 |
80 – 85 | 2 | 1 | 100 |
264 100
На основі даних табл. 12 будується кумулятивна крива, за якою визначаються швидкості 15% , 50% , та 85% забезпеченості .
Щоб побудувати кумулятивну криву, по осі ординат відкладають накопичену частість, % ( рис.6 ) , а по осі абсцис – швидкості руху.
Кумулятивна крива дає можливість проаналізувати швидкісну структуру транспортного потоку, визначивши швидкості 15% , 50% та 85% забезпеченості, які вважаються, відповідно, мінімальною, середньою та максимальною (або швидкістю організації руху) швидкостями транспортного потоку.