10802 (596853), страница 13

Файл №596853 10802 (Физиология растений) 13 страница10802 (596853) страница 132016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

Калий (К) является осмотически активным элементом, находится чаще всего в виде неорганического катиона, входит в рад ферментов в качестве активатора. Калий участвует в регуляции тургора клетки, избирательной проницаемости клеточных мембран.

Хлор (Cl) в форме хлорид-аниона перемещается вместе с калием, обеспечивая электронейтральность клетки, входит в число активаторов ферментов, катализирующих фотосинтетическое фосфорилирование. Хлор участвует в регуляции тургора клетки, в процессе фотосинтеза.

Железо (Fe) входит в состав многих важных ферментов, таких как цитохромы, ферредоксины, пероксидаза, каталаза, нитратредуктаза. Железо играет значительную роль в осуществлении таких физиологических процессов, как фотосинтез, дыхание, восстановление нитратов.

Молибден (Мо) входит в состав ферментов, восстанавливающих азот как из нитратной формы, так и из молекулярной формы. Восстановление азота из молекулярной формы осуществляется ферментом нитрогеназой, синтезирующейся в организме симбионтов бобовых растений - бактерий рода Rizobium - обитающих на корнях бобовых растений. Восстановление азота из нитратной формы осуществляется ферментами из группы нитратредуктаз. Молибден играет существенную роль в процессе синтеза аминокислот, а, значит, и в процессе биосинтеза белка.

Медь (Сu) входит в состав оксидаз (тирозиназа, аскорбатоксидаза). Медь играет значительную роль в процессе дыхания.

Цинк (Zn) входит в состав карбоангидразы и участвует в качестве кофактора при синтезе индолилуксусной кислоты (гормона из группы ауксинов). Этот элемент играет существенную роль в процессе поддержания запасов углекислого газа в форме иона НСО3-, и в процессе формирования апексов побегов и корней.

Бор (В) входит в качестве кофактора в ряд ферментов. Этот элемент играет роль в таких физиологических процессах, как деление меристем, перемещение ассимилятов, прорастание пыльцы, фенольный обмен, образование клеточных стенок.

Характеристика взаимоотношений элементов в растворах.

Минеральные вещества, поглощаемые растением, находятся в природных условиях в растворенном состоянии в почвенном растворе. Они представлены, как правило, в ионной форме и вступают между собой во взаимоотношения, регулируемые рядом закономерностей. Так, компоненты смеси веществ в растворе могут взаимодействовать по одному из следующих механизмов;

аддитивное действие компонентов смеси (когда действие смеси равно сумме действия отдельных компонентов. Примером такого действия является осмотическое давление, которое у смеси солей равно сумме парциальных осмотических давлений солей, входящих в смесь),

синергическое действие компонентов смеси (когда смесь солей действует сильнее, чем каждая из солей в отдельности, то есть физиологический эффект солевой смеси превышает сумму эффектов компонентов смеси. Синергизм может быть как положительным (внесение смеси минеральных удобрений), так и отрицательным (смесь пестицидов может пагубно влиять на растения),

антагонистическое действие компонентов смеси (когда физиологическое воздействие смеси солей оказывается меньшим, чем действие каждой из солей в отдельности и чем сумма из действия. Типичным примером антагонизма является взаимодействие одновалентных и двухвалентных катионов в растворе, активное развитие жизни в морской воде.

Раствор смеси солей называется физиологически уравновешенным раствором, когда количество и соотношение ионов обеспечивают нормальный рост, развитие и высокую продуктивность растений. Особенно важным является составление физиологически уравновешенных растворов в практике сельского хозяйства при использовании гидропонных технологий выращивания растений. Определяющим моментом величины отношения концентраций катионов в уравновешенных растворах является их валентность. Чем выше валентность иона, тем ниже относительная концентрация данного катиона в уравновешенном растворе. Способность уравновешивать токсическое действие у ионов возрастает быстрее, чем валентность, поэтому для растений солевые растворы являются уравновешенными, если отношении концентрации одновалентных катионов к двухвалентным приблизительно равно 10:

Особенности поглощения растениями элементов из почвенного раствора.

Элементы, соединения которых подвижны, активно поглощаются на ранних этапах развития растений, они поступают со скоростью, превышающей накопление в растении сухих веществ. Элементы, дающие малоподвижные соединения, поглощаются пропорционально синтезу сухих веществ, а в ряде случаев часто отстают от скорости синтеза этих веществ.

Одним из факторов, определяющих ход поглощения веществ растением, является химическая природа соединений, в виде которых данный элемент находится в тканях растения. По этому признаку питательные вещества делят на две группы:

элементы, участвующие в построении мобильных соединений клетки. Эти элементы называют реутилизируемыми. К ним относятся азот, фосфор, калий и магний. При недостатке этих элементов в почве растение транспортирует их во вновь образуемые органы из нижних листьев, при этом нижние листья увядают и отмирают.

элементы, более прочно связанные с протоплазмой и менее подвижные, которые не используются вторично. Эти элементы называются нереутилизируемыми. К ним относятся бор, кальций, железо. При их недостатке в почве старые листья остаются долгое время жизнеспособными, но растение не образует новых органов, то есть не способно развиваться и расти.

Установлено, что концентрация реутилизируемых элементов в растении имеет акропетальный градиент содержания, а нереутилизируемых элементов - базипетальный градиент содержания.

В процессе поглощения минеральных элементов из почвы растение использует комплекс механизмов:

корневой перехват питательных веществ (поглощение питательных веществ из новых объемов почвенного раствора в процессе роста корней),

массовый поток ионов к поверхности корней с потоком воды при поглощении ее корнями растений,

диффузионный поток ионов по градиенту концентрации вещества от ризосферы к корню (ионофорные каналы).

Растения усваивают минеральные элементы через корневые волоски независимо от поглощения воды. Этот процесс обусловлен обменом ионов, выделяемых растениями при дыхании, на ионы почвенного раствора. При дыхании растений получается углекислота, которая в тканях образует катион Н+ и анион НСО3-. В процессе питания катион водорода обменивается на катионы почвенного раствора (калий, кальций, магний, ион аммония), а карбонатный анион - на анионы азотной, серной, фосфорной и других кислот. Поглощение ионов происходит из сильно разбавленных растворов, что определяет технологию внесения минеральных удобрений.

Растение всегда будет более активно поглощать ионы, содержащие азот, чем все другие ионы, поскольку азот относится к наиболее важным органогенным элементам и требуется в большем количестве, чем другие минеральные элементы. При таком избирательном поглощении растениями ионов будет происходить и изменение реакции почвенного раствора. В связи с этим все минеральные соли, используемые в качестве минеральных удобрений подразделяют на три группы:

физиологически кислые, которые в большей степени поглощаются растением в катионной части (например, (NH4) 2SO4),

физиологически щелочные, которые в большей степени поглощаются растением в анионной части (например, NaNO3),

физиологические нейтральные, которые поглощаются как в катионной, так и в анионной части с одинаковой скоростью (например, NH4NO3).

Поэтому при внесении удобрений в почву всегда необходимо учитывать характеристику свойств почвы на конкретном поле и подбирать соответствующие соли так, чтобы обеспечить растениям максимально благоприятные условия питания.

Корень как орган поглощения минеральных элементов.

Корень - один из основных вегетативных органов растения. К его функциям относятся:

прикрепление к субстрату,

поглощение воды,

поглощение минеральных веществ,

синтез органических веществ,

выделение продуктов обмена,

запасание питательных веществ.

Тонкая оболочка корневого волоска плотно склеивается с комочками почвы. Корневые волоски служат опорой для растущей верхушки корня, выполняют функцию поглощения воды и минеральных веществ из почвы. Длина корневого волоска - 0,6-10 мм, но общая длина волосков весьма значительна и может достигать в сумме 20 км. Волоски выделяют в почву различные вещества, растворяющие труднодоступные растению соединения в почве. Продолжительность жизни корневого волоска - 15-20 дней.

Функционально поглотительной тканью корня являются корневые волоски (у водных растений - ризодермис), а первичная ассимиляция ионов происходит в коре корня.

Корневая система поглощает из почвенного поглощающего комплекса через почвенный раствор все необходимые элементы, причем способна растворять и нерастворимые соединения за счет выделения органических кислот. Это явление подтверждается опытами с использованием мраморной пластинки в сосуде, на которой ясно образуется отпечаток корневой системы растения, растворяющей мрамор в местах соприкосновения с корневыми волосками. Лучшему усвоению минеральных веществ способствует внесение физиологически кислых солей (при этом происходит освобождение анионов из трудно растворимых соединений), например, внесение сульфата аммония в почвы высвобождает фосфорную кислоту из фосфоритов, а внесение натриевой селитры не производит такого действия.

Корневые выделения при бессменном возделывании одной культуры могут влиять на растения отрицательно, создавая неблагоприятную рН почвенного раствора. При этом происходит накопление вредной микрофлоры, возбудителей корневых гнилей, что приводит к увеличению степени поражаемости культуры болезнями.

Корневые выделения состоят из:

веществ, которые отчуждаются клетками в обмен на поглощаемые ионы питательных солей,

веществ, теряемых корнем вследствие выщелачивания наружным раствором и "вытягиваемых" их корня электростатическими силами,

веществ, которые освобождаются отмирающими клетками чехлика, эпидермиса и коры.

Корневая система растений - это и место синтеза многих важных органических соединений, таких как аминокислоты, алкалоиды, гормоны и ряд других веществ. О синтетической роли корневой системы свидетельствует факт прекращения жизнедеятельности срезанных растений, даже если их помещают в питательный раствор. Только если у срезанного побега образуются новые придаточные корни, рост растения возобновляется. В культуре in vitro рост корневой ткани неограничен, а культуру клеток из стебля получить не удается.

Количественные показатели поглощения минеральных элементов.

Между клетками корня могут существовать значительные электрические градиенты, которые возникают и исчезают, по-видимому, вследствие включения и выключения ионных насосов и изменения концентрационных градиентов в тканях корня.

Поглощенные ионы должны сначала пересечь плазмалемму, чтобы проникнуть в цитоплазму, а затем и в мембрану, окружающую вакуоль, или другую органеллу, чтобы попасть затем во внутренний компартмент цитоплазмы.

Ионы могут проникать через мембрану активно или пассивно, при этом они перемещаются благодаря своей кинетической энергии, не потребляя при этом энергию АТФ. Липидорастворимые молекулы проходят сквозь мембраны легко, многие неорганические ионы, не растворимые в липидах, проникают, по-видимому, через специальные водные белковые каналы в мембране, то есть используется механизм облегченной диффузии с участием пермеаз.

О скорости диффузии ионов сквозь мембрану судят по коэффициенту проницаемости Р.

Наибольшей скоростью диффузии обладает К+, поэтому значение Р для К+ принято за 1,0.

Существуют белки, способные образовывать каналы в мембранах для определенных ионов, их называют ионофорами. Ионофоры способны увеличивать скорость диффузии иона в миллион раз. Ряд специфических веществ, например, антибиотики (грамицидин), способны проникать именно через ионофоры, вызывая быструю гибель клетки.

Так как ионы заряжены, то скорость из диффузии определяется не только химическим потенциалом (концентрация ионов по обе стороны мембраны), но и электрическим потенциалом внешней и внутренней стороны мембраны. Обычно растительные клетки на внутренней стороне мембраны имеют отрицательный потенциал, поэтому катионы поглощаются в большей степени, чем анионы. Разность потенциалов внутри и снаружи клетки колеблется от 50 до 200 мВ. Эта разница в заряде сторон мембраны называется трансмембранным потенциалом.

Совокупность химического и электрического потенциала составляет электрохимический градиент, согласно которому и происходит диффузия ионов в клетку.

Когда транспорт осуществляется по электрохимическому градиенту ионы сначала присоединяются к особым участкам на мембране (пермеазам). Затем они проникают в клетку в соответствии с уравнением нернста, если общий эффект градиента их концентрации по обе стороны мембраны и электрический трансмембранный потенциал обеспечивают движущую силу, направленную внутрь.

Уравнение Нернста связывает электрический потенциал внутри клетки с распределением заряженных ионов:

Е = - 58/n. lgСi/Co,

где

Е - трансмембранный коэффициент, измеряемый в мВ, определяемый с использованием заземленного электрода вне клетки, n - валентность и заряд иона, Сi - концентрация (молярность) иона внутри клетки, Co - концентрация (молярность) иона вне клетки.

При перемещении ионов через ионофоры происходит транспорт ионов против электрохимического градиента благодаря использованию энергии АТФ. При этом происходит обмен одноименных ионов, например: в клетку перемещается поток К+, а из клетки - поток Н+, в клетку - поток NO3-, а из клетки - поток НСО3-.

Характеристики

Тип файла
Документ
Размер
1,75 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее