169841 (595770), страница 5
Текст из файла (страница 5)
Рис. 6. Трансформация и фракционирование нефтепродуктов на сооружениях с аэротенками
1.5 Интенсификация процессов биологической очистки
Необходимость реконструкции и расширения очистных сооружений возникает при несоответствии получаемого эффекта очистки сточных вод требуемому при сбросе их в естественные водоемы или использовании в хозяйственных целях.
Основными причинами ухудшения работы действующих очистных сооружений являются: превышение их проектной производительности по расходу очищаемых сточных вод ("перегрузка по расходу"); превышение производительности сооружений по количеству загрязнений, подлежащих удалению ("перегрузка по загрязнениям"); изменение состава и концентраций загрязняющих веществ [15].
Повышение производительности и эффективности действующих очистных сооружений может быть достигнуто несколькими путями: строительством дополнительных сооружений по всей технологической линии очистки сточных вод и обработки осадков; расширением одного или нескольких элементов технологической линии, обеспечивающим улучшение работы других сооружений и всего комплекса в целом; интенсификацией технологических процессов очистки сточных вод на существующих очистных сооружениях (предварительная аэрация сточных вод, биокоагуляция загрязнений, увеличение доз активного ила в аэротенках, повышение интенсивности аэрации); переоборудованием отдельных сооружений в более производительные, обеспечивающие более высокий эффект удаления загрязнений в сравнении с применяемыми.
Выбор каждого из указанных путей повышения производительности и эффективности работы очистных сооружений должен быть сделан с учетом конкретной ситуации и технико-экономических соображений.
Интенсификация работы аэротенка
Увеличение дозы активного ила в зоне аэрации является одним из наиболее важных направлений интенсификации биохимической очистки сточных вод в аэротенках. При повышении дозы с 1—2 до 25—30 г/л пропорционально возрастает окислительная мощность аэротенка с 0,5—1 до 12—14,5 кг БПК/(м3-сут). Однако для системы аэротенк — вторичный отстойник существует предельная концентрация активного ила, превышение которой ведет к дестабилизации работы системы и ухудшению качества очистки. "Узким местом" в этой системе является вторичный отстойник, для которого оптимальная доза ила составляет 1,5—2 г/л [16].
Увеличить дозу активного ила в аэротенке можно разными путями. Наиболее простой из них — введение отдельной регенерации активного ила. Это достигается возвратом на стадию регенерации уплотненного во вторичном отстойнике активного ила. Его доза в регенераторе может достигать 7—8, а в рабочей зоне аэротенка – 1,5—2,5 г/л. Дальнейшее увеличение дозы активного ила вынуждает применять двухступенчатое гравитационное илоотделение, модифицировать вторичные отстойники тонкослойными модулями или применять такие более мощные сооружения, как флотаторы, осветлители со взвешенным слоем, фильтры.
Другим путем увеличении дозы активного ила является создание аэротенков с фильтрационным разделением иловой смеси. В рабочей зоне такого сооружения поддерживается доза активного ила до 25 г/л. Однако перед подачей очищенной сточной жидкости во вторичный отстойник она пропускается через специальные фильтровальные перегородки сетчатого или пористого типа. При этом во вторичные отстойники поступает не более 3—4 г/л взвешенных веществ [15].
Дозу ила в аэротенке можно увеличить, добавив в нее инертный носитель биомассы. Этот прием заключается в размещении в секциях аэротенка биологически инертного материала в качестве носителя прикрепленной биомассы. Это позволит не только добиться соответствия составов вследствие процессов автоселекции комплекса субстрат — активный ил, но и снизить потребление электроэнергии в результате отказа от рециркуляции, регенерации и некоторого снижения интенсивности аэрации. Также прикрепленный биоценоз позволит облегчить проблему вспухающего активного ила при резких колебаниях состава сточной жидкости и проблему наращивания необходимой концентрации активного ила на слабоконцентрированной сточной воде.
Использование кислорода в аэротенках также позволяет значительно интенсифицировать их работу. Наибольший опыт в разработке и эксплуатации аэротенков, работающих на чистом кислороде или кислородообогащенном воздухе, накоплен в США. Такие аэротенки, получили в практике очистки сточных вод название окситенки.
Совершенствование гидродинамического режима аэротенков также позволяет интенсифицировать их работу. Была разработана конструкция аэротенка с неравномерно рассредоточенной подачей жидкости (АНР), сочетающего преимущества аэротенка-смесителя и аэротенка-вытеснителя. Подача сточной жидкости в аэротенк типа АНР осуществляется по длине сооружения через затворы-водосливы, обеспечивающие регулирование расхода пропорционально концентрации активного ила в зоне аэрации.
Эффектность работы действующих коридорных аэротенков можно повысить путем разделения объёма коридора на секции (камеры, ячейки). В кротенке такой конструкции происходит полное перемешивание жидкости в каждой камере, однако отсутствует ее перемешивание между камерами. При последовательном движении жидкости от камеры к камере через отверстия в придонной части перегородок создается гидравлический режим, аналогичный гидравлическому режиму в идеал ном вытеснителе. Этот прием позволяет использовать одновременно два технологических режима очистки: смешение и вытеснение. Такая схема обусловливает высокие стабильность и качество очистки сточных вод. Кроме того, в каждой зоне благодаря процессам автоселекции развивается адаптированный биоценоз активного ила, что также способствует стабилизации процесса очистки.
Совершенствование систем аэрации сточных вод позволяет в значительной мере интенсифицировать процессы биологической очистки, снизить эксплуатационные расходы и затраты электроэнергии.
Большинство станций аэрации оснащено пневматическими аэраторами, из которых наиболее эффективны мелкопузырчатые. Мелкопузырчатая аэрация обеспечивает эффективность насыщения жидкости кислородом в пределах 2—3,3 кг/кВт-ч электроэнергии, средне- и крупнопузырчатая — 1,4—1,8 кг/кВт-ч. Совершенствование мелкопузырчатой аэрации идет по пути создания устойчивых к засорению, а также легко извлекаемых и заменяемых или регенерируемых фильтросов.
Перспективным является применение тканевых аэраторов трубчатой, тарельчатой, коробчатой и других форм. Во ВНИИ ВОДГЕО установлено, что при одинаковом качестве диспергированного воздуха тканевые фильтросы примерно в 6 раз дешевле керамических и их регенерация осуществляется путем обычной стирки в растворе детергентов.
В среднепузырчатых аэрационных системах перспективным является создание клапанных аэраторов.
Совершенствование механических аэраторов в основном направлено на разработку надежных редукторов, жестких и прочных валов и рабочих колес, мало подверженных загрязнению.
Перспективным направлением является применение пневмомеханической аэрации, использующей одновременно механическую энергию вращающегося ротора и подачу сжатого воздуха. Степень использования кислорода в таких системах достигает 20-25%, что в 2-2,5 раза выше, чем при пневматической аэрации [7].
Таким образом, из изложенного выше видно, что работу аэротеиков можно интенсифицировать в результате повышения концентрации активной биомассы в зоне аэрации, а также совершенствования конструкции всего сооружения в целом и отдельных его элементов.
1.6 Системы аэрации сточных вод
Под системами аэрации следует понимать комплекс сооружений, устройств и оборудования, обеспечивающих подачу и распределение воздуха (кислорода) в аэротенке, поддержание активного ила во взвешенном состоянии и создание благоприятных гидродинамических условий работы аэротенков, а также отдувку образующихся в результате метаболизма газов, избыток которых может тормозить (ингибировать) процесс биохимической очистки сточных вод [12]. В зависимости от способа подачи и распределения кислородсодержащего газа в аэротенках все применяемые в настоящее время аэраторы можно классифицировать следующим образом: 1) пневматические; 2) механические; 3) пневмомеханические; 4) струйные.
Пневматическая система аэрации. Пневматические аэраторы подразделяют на типы в зависимости от крупности получаемых пузырьков: мелкопузырчатые (d = 1—4 мм), среднепузырчатые (d = 5—10 мм) и крупнопузырчатые (d >10 мм). К мелкопузырчатым относятся, например, аэраторы форсуночного и ударного типа, а также керамические, тканевые и пластиковые аэраторы; к среднепузырчатым — перфорированные трубы, щелевые и другие устройства; к крупнопузырчатым — открытые трубы, сопла и т.п. Примерная классификация пневматических аэраторов приведена на рис.7. При массовом всплывании пузырьков в воде различают следующие гидродинамические режимы: барботажный, барботажно-струйный, струйный и режим подвижной пены. Исследования показали, что мелкопузырчатые аэраторы работают в барботажном режиме, а среднепузырчатые — в барботажно-струйном. В аэротенках-вытеснителях широкое применение получили пористые аэраторы — фильтросные пластины, а также перфорированные трубы. Сжатый воздух подается к каналу, расположенному по всей длине дна аэротенка. Этот канал перекрывается фильтросами. Фильтросы обычно размещают на дне аэротенка с одной стороны (односторонняя аэрация), с двух сторон или равномерно через некоторое расстояние по всему дну. Средний размер пор отечественных фильтросов составляет 100 мкм. Затраты энергии — 1,15—1,40 кВт * ч на 1 кг удаленной примеси (по БПК5).
Рис. 7. Классификация пневматических аэраторов
За рубежом распространены, наряду с фильтросными плитами, дисковые пористые диффузоры, пористые трубы и др.
Основным недостатком пористых мелкопузырчатых аэраторов является их засорение пылью, поступающей с воздухом. Содержание пыли в воздухе не должно превышать 0,05 мг/м3. Перерывы в аэрации приводят к фильтрованию жидкости через пористые аэраторы и забиванию их частицами активного ила. Среднепузырчатые аэраторы — перфорированные трубы (d = 6 + 10 мм) — менее эффективны, но и меньше засоряются.
Для предотвращения осаждения активного ила в аэротенке минимальные донные скорости воды должны быть в пределах 15—30 см/с.
Условия эффективной работы пневматических аэраторов
Эффективность работы пневматических аэраторов зависит от состава сточных вод, характера процесса очистки, а также от качества их строительства и уровня эксплуатации. Среди факторов, которые влияют на работу пневматических аэраторов и могут быть учтены ещё на стадии проектирования, в первую очередь следует отметить расположение аэраторов в плане, глубину их погружения и удельные нагрузки по воздуху (интенсивность аэрации). Расположение аэраторов в плане. Ширина и форма аэрационной полосы в аэротенке влияют на формирование гидродинамической структуры потока и в значительной степени определяют эффективность процесса массопередачи [12]. На рис. 8 представлены различные варианты расположения аэраторов.
Рис. 8. Различные варианты расположения пневматических аэраторов в аэротенках: а – ж – продольное; з – поперечное; и – диагональное; к – н – поперечно-продольное; о – продольно-диагональное; п – сплошное.
Механическая и пневмомеханическая системы аэрации. При механической системе аэрации перемешивание иловой смеси и воздуха осуществляется механическими устройствами, например вращающимися мешалками, щетками, турбинками и т.п.
Механические аэраторы подразделяются на аэраторы малого и глубокого погружения. В первом случае кислород вовлекается в поверхностную зону жидкости, а затем перемешивается со всем объемом воды за счет энергии аэратора, во втором — обеспечивается активное насыщение кислородом придонных слоев сточной воды, которые интенсивно перемешиваются со всем объемом воды.
По конструктивным особенностям механические аэраторы подразделяются на аэраторы с горизонтальной и вертикальной осью вращения. Глубинные аэраторы с принудительной подачей воздуха называются пневмомеханическими.
Струйные аэраторы. Принцип действия струйных или гидравлических аэраторов заключается в использовании энергии движущейся жидкости для создания развитой поверхности газожидкостного контакта.
Возможны два различных метода использования кинетической энергии струи рабочей жидкости: аэрация свободнопадающей струёй и напорное истечение через насадки (сопла), перемещённые в камеру эжекции.
Аэрация сточных вод в сооружениях биологической очистки (аэротенках, биотенках, затопленных аэрофильтрах) требует больших затрат электроэнергии, составляющих до 50% общих эксплуатационных расходов. Значительное снижение этих затрат дают современные системы мелкопузырчатой аэрации, отличающейся большой эффективностью массопередачи кислорода из аэрирующего воздуха в воду. К таким системам относится аэрационное оборудование фирмы "Креал", эффективность которого втрое выше аэраторов из перфорированных труб.
Аэраторы изготовляются из химически стойких полимерных материалов по запатентованной технологии. Их выпуск освоен в 1994 году. К настоящему времени 200.000 аэраторов эксплуатируются на десятках очистных сооружениях, обеспечивая эффективную очистку сточных вод при минимальных затратах электроэнергии.