169841 (595770), страница 4
Текст из файла (страница 4)
Основную роль в очистке сточных вод играют процессы возвращения вещества, протекающие внутри клеток микроорганизмов. Эти процессы, как правило, заканчиваются окислением вещества с выделением энергии и синтезом новых веществ с затратой энергии. Внутри клеток микроорганизмов происходит непрерывный и сложный комплекс химических превращений. В клетках в строгой последовательности протекает большое количество реакций с высокой скоростью. Скорость реакций и их последовательность зависит от наличия ферментов, которые выполняют роль катализаторов. Особенностью ферментов является то, что каждый из них воздействует только на определённое химическое соединение и катализирует одно из многих превращений, которым подвергается данное химическое соединение. При изменение состава и концентрации веществ меняется и состав ферментов. Таким образом, каждую реакцию катализирует один соответствующий фермент. При этом продукт одной реакции служит субстратом для следующей. Скорость образования и распада ферментов зависит от условий роста микроорганизмов и определяется скоростью поступления в клетку веществ, ингибирующих и активирующих биохимические процессы. Клетки каждого вида микроорганизмов имеют определённый набор ферментов. Некоторые из них независимо от субстрата постоянно присутствуют в клетках микроорганизмов. Такие ферменты называются конститутивными. Другие ферменты синтезируются в клетках вследствие каких-либо изменений в окружающей среде. Например, изменения состава или концентрации загрязнений сточных вод. Эти ферменты позволяют в период приспособления микроорганизмов к изменению среды, поэтому называются адаптивными. Сроки адаптации различны и продолжаются от нескольких часов до десятков и сотен дней [10]. Если в сточных вода содержится несколько веществ, то процесс окисления будет зависеть от количества и структуры всех растворённых органических веществ. В первую очередь будут окисляться те вещества, которые необходимы для создания клеточного материала. Порядок окисления веществ будет сказываться на продолжительности очистки сточных вод. Для разрушения сложной смеси органических веществ необходимо 80 – 100 различных ферментов. Суммарные реакции биохимического окисления в аэробных условиях схематично можно представить в следующем виде:
(1)
(2)
где CxHyOzN – все органические вещества сточных вод, C5H7NO2 – среднее соотношение основных элементов в клеточном веществе бактерий.
Реакция (1) соответствует окислению вещества на энергетические потребности клетки, реакция (2) – на синтез клеточного вещества. Затраты кислорода на эти реакции составляют БПКполн сточной воды. Если процесс окисления проводится дальше, то начинается превращение клеточного вещества:
(3)
(4)
Общий расход кислорода на четыре реакции приблизительно вдвое больше, чем на реакции (1) и (2).
Как видно из уравнений реакций, химические превращения являются источником необходимой для микроорганизмов энергии.
Влияние различных факторов на скорость биохимического окисления
Скорость биохимического окисления зависит от концентрации органического вещества и равномерности поступления загрязнений на очистку. Основными факторами, влияющими на скорость биохимических реакций, являются концентрация органического вещества, содержание кислорода в сточной воде, температура и величина рН, содержание биогенных элементов, а также тяжёлых металлов и минеральных солей.
Турбулизация сточных вод в очистных сооружениях способствует распаду хлопьев активного ила на более мелкие и быстрому обновлению поверхности раздела, увеличивает скорость поступления питательных веществ и кислорода к микроорганизмам и тем самым увеличивает скорость очистки. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обеспечивает равномерное распределение его в сточной воде.
Доза активного ила зависит от илового индекса. Чем меньше иловый индекс, тем большую дозу активного ила необходимо подавать на очистные сооружения. Рекомендуется поддерживаться следующие соотношения.
Иловый индекс, мл/г00000
Доза ила, г/л ,3,5,5
Для очистки следует применять свежий активный ил, который хорошо оседает и более вынослив к колебаниям температуры и величины рН. Установлено, что с повышением температуры сточной воды скорость биохимической реакции возрастает. Однако на практике её поддерживают в пределах 20 – 30°С, поскольку дальнейшее повышение температуры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс акклиматизации микроорганизмов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. С изменением температуры сточной воды изменяется растворимость кислорода. При увеличении температуры сточной воды растворимость кислорода уменьшается, поэтому для поддержания необходимой концентрации его в воде требуется проводить более интенсивную аэрацию.
Абсорбция и потребление кислорода
Для окисления органических веществ микроорганизмами необходим растворённый в воде кислород. Для насыщения сточной воды кислородом проводят процесс аэрации, разбивая воздушный поток на пузырьки, которые по возможности равномерно распределяются в сточной воде. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам. Таким образом, в ходе очистки протекает два процесса – абсорбция кислорода сточной водой и потребление его микроорганизмами.
Рис. 5. Схема переноса кислорода от пузырьков газа к микроорганизмам:
А – пузырёк газа, Б – скопление микроорганизмов, 1 – пограничный диффузионный слой со стороны газа, 2 – поверхность раздела, 3 – пограничный диффузионный слой со стороны жидкости, 4 – перенос кислорода от пузырька к микроорганизмам, 5 - пограничный диффузионный слой со стороны жидкости у микроорганизмов, 6 – переход кислорода внутрь клеток, 7 – реакция между молекулами кислорода и ферментами.
Количество абсорбированного кислорода может быть вычислено по уравнению массоотдачи:
,
где М – количество абсорбированного кислорода, кг/с; βv – объёмный коэффициент массоотдачи, 1/с; V – объём сточной воды, м3; Ср, С – равновесная концентрация и концентрация кислорода в основной массе жидкости, кг/м3.
Исходя из уравнения массоотдачи, количество абсорбированного кислорода может быть увеличено за счёт роста коэффициента массоотдачи или движущей силы.
Наиболее надёжный путь увеличения поступления кислорода в сточную воду – это увеличение объёмного коэффициента массоотдачи. Известно, что этот коэффициент представляет собой произведение действительного коэффициента массоотдачи βж на удельную поверхность контакта фаз – а: . Увеличивая интенсивность дробления газового потока, то есть уменьшая размеры газовых пузырьков и увеличивая газосодержание потока сточной воды в сооружении, можно значительно увеличить удельную поверхность контакта фаз и тем самым повысить поступление кислорода в сточную воду.
Физические свойства сточной жидкости оказывают заметное влияние на процесс абсорбции кислорода. Вязкость и поверхностное натяжение влияют на размер пузырьков газа, изменяя тем самым поверхность массообмена.
Скорость потребления микроорганизмами кислорода не может превышать скорость абсорбции, в противном случае ухудшается обмен веществ и снижается скорость окисления загрязнений.
Биогенные элементы
Для успешного протекания реакций биохимического окисления необходимо наличие в сточных водах соединений биогенных элементов и микроэлементов N, S, P, K, Mg, Ca, Na, Cl, Fe, Mo, Ni, Co, Zn, Cu и др. среди этих элементов основными являются N, P и K, содержание которых при биохимической очистке необходимо нормировать.
Недостаток азота тормозит окисление органических загрязнений и способствует образованию труднооседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является основной причиной вспухания активного ила, плохого оседания и выноса его из очистных сооружений, замедленного роста ила и снижение интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках. Азот – в форме NH4+, а фосфор в виде солей фосфорных кислот.
Количество биогенных элементов зависит от состава сточных вод и должно устанавливаться экспериментально. Для ориентировочных подсчётов можно воспользоваться следующим соотношением БПКп: N : P = 100 : 50 : 1. Такое соотношение правильно применять только в течение первых трёх суток. Большая продолжительность очистки приводит к низкому выходу активного ила и требует меньших количеств азота и фосфора.
При недостатке азота, фосфора и калия в сточную воду вносят различные азотные, фосфорные и калиевые соли. При совместной очистке промышленных и бытовых сточных вод добавлять биогенные элементы не нужно, так как в бытовых стоках содержится азот, фосфор и калий в достаточных количествах.
1.4 Деструкция нефтепродуктов в процессе биологической очистки сточных вод
Нефть и нефтепродукты — наиболее распространенные загрязняющие вещества, присутствующие в сточных водах. Нефтепродукты представляют собой сложную смесь различных углеводородов (низко- и высокомолекулярных, предельных и непредельных, алифатических, ароматических, алициклических), а также неуглеводородных соединений серо-, кислород-, азотсодержащих и высокомолекулярных смолоасфальтеновых веществ с включенными в них тяжелыми металлами. Углеводороды составляют от 50 до 98 % от общей массы сырой нефти. Остальная, иногда довольно большая часть, приходится на неуглеводородные соединения, которые могут быть более токсичны и опасны для активного ила, чем углеводороды. Кроме того, нефть содержит до 10 % воды и минеральные соли: NaCl, MgCl2, CaCl2 [2].
Скорость и эффективность трансформации нефтепродуктов на сооружениях биологической очистки, прежде всего, связана с аэробностью условий. Сброшенные в канализацию нефтепродукты, практически не изменяясь в анаэробных условиях этих систем, поступают на очистные сооружения. Эффективность разложения нефтепродуктов на сооружениях биологической очистки зависит от:
-
химического состава нефти, ее свойств (прежде всего: летучести, плотности, растворимости основных составляющих компонентов) и поступающей в аэротенки концентрации нефтепродуктов;
-
наличия баланса между поступлением нефтепродуктов и их эффективной деструкцией;
-
физико-химических условий в аэротенках (температуры, рН, содержания растворенного кислорода в иловой смеси);
-
сбалансированного состава сточных вод, обеспечивающих полноценное питание активного ила (минимальные необходимые количества углеродсодержащей органики, азота и фосфора в пропорции 100 : 3 : 0,5);
-
технологического режима очистки (дозы, возраста ила, удельных нагрузок на активный ил, окислительной мощности аэротенков);
-
свойств активного ила (процентного содержания углеводородокисляющих бактерий в общей биомассе активного ила, адаптационных свойств, ферментативной активности).
В аэротенках нефтепродукты подвергаются испарению, хемоокислению, биотрансформации, биосорбции на активном иле и ферментативной деструкции. Изменения состава нефти в аэробных условиях аэротенков происходят чрезвычайно быстро. Повышенная температура и интенсивное перемешивание активного ила, а также непрерывная подача воздуха в аэротенки катализируют процесс биодеструкции нефтепродуктов.
В аэротенках нефтепродукты фракционируют на:
- поверхностную пленку, которая быстро исчезает благодаря перемешиванию иловой смеси;
- два вида водонефтяных эмульсий: механическую и, более стойкую — химическую с включением поверхностно-активных веществ (мыла, детергенты, сода и т.п.), которые увеличивают поверхностное натяжение и повышают стойкость нефтепродуктов к биодеградации;
- комки и агрегаты, оседающие на стенках, трубах, аэрационных элементах.
При продолжительном поступлении нефтепродуктов на очистные сооружения и нарастании нагрузок на ил биоценоз может полностью разрушиться, а нефтепродукты в виде комков и агрегатов, иногда в виде пленки толщиной в несколько миллиметров, накапливаются на стенках аэротенков, вторичных отстойников. Биодеградация и вымывание таких пленок, комков чрезвычайно медленный процесс (до нескольких лет). Тяжелые фракции нефтепродуктов накапливаются в активном иле. Комочки нефтепродуктов включаются в активный ил и могут даже использоваться организмами ила в качестве опоры. Накопленные в активном иле агрегаты нефтепродуктов с избыточным илом попадают в осадки [4].
Для удовлетворительной биодеструкции углеводородов в аэротенках необходимо поддерживать оптимальные условия жизнеобеспечения активного ила. При нарушении стабильности основных физико-химических параметров действие шоковых нагрузок на активный ил усиливается. Необходимая температура для успешного разложения нефтепродуктов не менее 6-10 °С, понижение температуры приводит к снижению удельной скорости окисления загрязняющих веществ, а повышение сверх оптимальной — к снижению растворимости кислорода в иловой смеси, усилению чувствительности активного ила к токсическому действию нефти. Оптимальной принята температура от 18 до 32 °С (Берне, Кордонье, 1997). Повышение температуры сточных вод до максимальных значений оптимума благоприятно в связи с интенсификацией удаления летучих фракций нефти в первичных отстойниках, в результате чего снижается токсическое действие нефтепродуктов (попадающих в дальнейшем в аэротенки) на активный ил. Оптимум рН находится в пределах 6,8-7,8, подкисление сточных вод наиболее неблагоприятно, так как токсичность нефтепродуктов повышается, и процесс их биотрансформации тормозится.