151566 (594697), страница 4

Файл №594697 151566 (Оценки спектральных радиусов) 4 страница151566 (594697) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Если для верна оценка , тогда

. (2)

Доказательство.

Существует такой функционал , что

и ,

где - собственное значение оператора , соответствующее функционалу . Применим функционал к (1):

,

,

.

Т.к. оператор - неразложим, то данный функционал принимает положительные значения на ненулевых элементах конуса [29]. Поэтому

.

Заменив на , мы только усилим неравенство (т.к. ):

.

Первое утверждение теоремы доказано. Из последнего неравенства очевидным образом следует неравенство (2). Теорема доказана.

Пример 1. Рассмотрим матрицу и вектор пространства , а также матрицу , коммутирующую с матрицей :

; ; ; ,

поэтому , и . Все условия теоремы 1 выполнены, следовательно , т.к. , то имеем . В то время как .

При получим известную теорему Стеценко В.Я. [20]:

Пусть оператор неразложим и , K - телесный и нормальный конус, и для некоторого элемента выполняется неравенство , тогда справедливо неравенство .

Эта теорема является частным случаем теоремы 1.

Кроме того, заметим, что использование коммутирующего с оператором оператора способствовало уточнению оценки . Действительно, если в примере 1 предположить , то , и тогда , а эта оценка намного хуже оценки .

Аналогично теореме 1 доказывается следующая теорема.

Теорема 2. Пусть - воспроизводящий и нормальный конус, и - линейные положительные операторы, причем они коммутируют, т.е. . Пусть - неразложим, и для некоторого выполняется неравенство

,

где , . Тогда

.

Если для верна оценка , тогда

.

Теорема 3. Пусть воспроизводящий и нормальный конус, и линейные положительные операторы, причем они коммутируют, т.е. . Пусть - неразложим. Пусть для некоторого выполняется неравенство

, (3)

где , . Тогда верна оценка:

,

где - наименьшее позитивное собственное значение оператора .

Доказательство.

Применим к (3) функционал из теоремы 1:

.

Т.к. оператор - неразложим, то данный функционал принимает положительные значения на ненулевых элементах конуса [29]. Поэтому

.

Т.к. , то заменив в последнем неравенстве на , только усилим его:

,

таким образом . Теорема доказана.

Следствие (к теореме 3). Если в условиях теоремы 3 предположить, что оператор также неразложим, тогда будет верна оценка:

.

Теорема 4. Пусть воспроизводящий и нормальный конус, и линейные положительные операторы, причем они коммутируют, т.е. . Пусть - неразложим, и пусть для некоторого выполняется неравенство

,

, . Если спектральный радиус оператора известен и , то

.

Если для известна оценка и выполняется неравенство , тогда имеет место оценка: .

Доказательство.

Как и при доказательстве теоремы 1, придем к неравенству

. (4)

Предположим, что , тогда, усиливая неравенство (4), получим

,

,

что противоречит предположению. Остается принять, что . Усиливая неравенство (4), получим

.

Первое утверждение теоремы доказано. Заменяя в неравенстве (4) на большее число , повторим рассуждения и получим второе утверждение теоремы. Теорема доказана.

Теорема 6. Пусть воспроизводящий и нормальный конус, и линейные положительные операторы, причем они коммутируют, т.е. . Пусть - неразложим и для некоторого выполняется неравенство

,

, . Если наименьшее позитивное значение оператора известно и , то

.

Если для известна оценка , и выполняется неравенство , тогда имеет место оценка: .

Доказательство теоремы 5 вполне аналогично доказательству теоремы 4.

Следствие (к теореме 5). Если в условиях теоремы 5 предположить, что оператор также неразложим, спектральный радиус оператора известен и , тогда верна оценка:

.

Теорема 6. Пусть воспроизводящий и нормальный конус, и линейные положительные операторы, причем они коммутируют, т.е. . Пусть - неразложим. Если для некоторого выполняется неравенство

,

где , и , то верна оценка:

.

Доказательство.

Аналогично тому, как это было сделано в теореме 1, приходим к неравенству

, (5)

из которого следует, что . Действительно, предположив противное, т.е. предположив, что , и усилив неравенство (5), получим

,

что противоречит условию. Остается принять, что . Усиливая неравенство (5), получим , откуда следует

.

Теорема доказана.

Эти результаты были описаны в работах ([26], [29]). Важным моментом доказанных теорем является то, что телесность конуса не предполагается.

Глава III.

Интегральные операторы в пространствах Лебега и Лоренца

§1. Пространства Лебега и Лоренца

Введем понятие группы преобразований [5]. Пусть есть два преобразования f и g. G называется группой, если для любых f и g, таких, что выполняются следующие условия:

1. ;

2. (I - единичное преобразование, );

3. ( -обратное преобразование).

Очевидно, преобразования вида образуют группу. Для любых преобразований группы Лоренца скалярное произведение двух векторов является инвариантом. Если X и - тензоры, то инвариантом группы Лоренца будет

.

Так же инвариантом группы Лоренца является ранг тензора.

Еще одно очевидное свойство любого преобразования группы Лоренца: .

Рассмотрим положительно определенные формы. Докажем следующую теорему.

Теорема 1. Пусть

, (1)

Для xi из области R, определенной соотношениями

(2)

Тогда для

(3)

Доказательство.

Применим метод квазилинеаризации, покажем, что

, (4)

где S(z) – область, определенная соотношениями

(5)

Применяя неравенство Гельдера, получаем

(6)

Минимум последнего выражения как функции от в силу условий (2) и (5) достигается в точке, где

,

и равен . Отсюда следует представление (4). Из этого представления следует теорема 1. Приведенное доказательство принадлежит Беллману [5].

Лебеговские функциональные пространства

Пусть , Лебеговским функциональным пространством называется совокупность всех вещественнозначных (соответственно - комплекснозначных) измеримых по Лебегу функций (соответственно - ) [14], таких, что интегрируема на X, т.е.

Число

называется нормой функции f в пространстве Lp(X). Для компактного метрического пространства X размерность Лебега определяется как наименьшее целое число n, обладающее тем свойством, что при любом существует конечное открытое покрытие X, имеющее кратность.

При этом:

  • покрытием метрического пространства называется покрытие, все элементы которого имеют диаметр;

  • кратностью конечного покрытия пространства X называется такое наибольшее целое число k, что существует точка пространства X, содержащаяся в k элементах данного покрытия.

Наиболее важными свойствами лебеговских пространств являются следующие [17], [23]:

1). (Неравенство Гельдера). Пусть p>1, q>1, 1/p+1/q=1 и , . Тогда , и выполнено неравенство , т. е. .

2). (Неравенство Минковского). Если и , то ,и имеет место неравенство , т. е. .

Приступая к доказательству неравенства Минковского, заметим, что при p=1 оно очевидно. Если p>1, то можем написать

.

Найдем положительное число q из условия 1/p+1/q=1 и применим неравенство Гельдера к каждому из интегралов, стоящих в правой части последней формулы. Тогда

.

Последнее равенство здесь написано в силу того, что q(p-1)=p.

Разделив начальный и конечный члены полученного неравенства на

и учтя, что 1-1/q=1/p, получим

,

что и завершает доказательство неравенства Минковского.

Следующее свойство лебеговских функциональных пространств существенно опирается на неравенство Минковского:

3). Для любого пространство Lp(X) с введенной выше нормой является линейным нормированным пространством.

Для доказательства заметим, что если , то для любого числа функция лежит в Lp(X) (что очевидно), и f+g лежит в Lp(X) (в соответствии с неравенством Минковского). Неотрицательность нормы очевидна. Условие только при f=0 выполняется, в силу принятого в теории интеграла Лебега соглашения, что функция f равна нулю на множестве X , если и только если f(x)=0 для почти всех . Неравенство треугольника для нормы выполняется в силу неравенства Минковского. Положительная однородность нормы видна непосредственно из определения (2).

Конструкция интеграла Лебега ценна не столько тем, что она позволяет расширить класс интегрируемых функций по сравнению с интегралом Римана (известны еще более общие конструкции интеграла), сколько тем, что интеграл Лебега обладает наиболее естественными и удобными свойствами. Одно из них, принимаемое нами без доказательства, таково:

4). (Полнота лебеговских пространств). Для любого линейное нормированное пространство Lp(X) является полным, другими словами - всякая фундаментальная последовательность функций из Lp(X) сходится к некоторой функции из Lp(X) , т.е., если и для каждого существует номер no такой, что для всех выполняется неравенство , то существует функция такая, что при .

5). (Плотность бесконечно дифференцируемых функций в Lp(X)). Для любого множество бесконечно дифференцируемых функций плотно в Lp(X), иными словами - для любой функции и любого найдется функция такая, что .

6). (Сепарабельность лебеговских пространств). Для любого пространство Lp(X) сепарабельно, иначе говоря, в Lp(X) существует счетное плотное множество функций.

§2. Условия ограниченности интегрального оператора в

пространствах Лоренца

Пусть

Характеристики

Тип файла
Документ
Размер
9,54 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее