151566 (594697), страница 3

Файл №594697 151566 (Оценки спектральных радиусов) 3 страница151566 (594697) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Наиболее распространенными представителями нелинейных интегральных уравнений являются уравнения Урысона

и уравнения Гаммерштейна

Уравнения I и II рода

Если α(t) ≠ 0 при всех t [a, b], то уравнение (1), очевидно, может быть переписано в виде

(2)

Уравнения такого вида называют уравнениями II рода, отличая их от уравнений I рода

(3)

Если в некотором пространстве функций на отрезке [a, b] определить интегральный оператор

то уравнения (2) и (3), очевидно, переписываются в виде

x = Ix + f (4)

и

0 = Ix + f (5)

Прежде, чем объяснить разницу между уравнениями I и II родов, введем понятие корректности уравнения. Огрубляя ситуацию, говорят, что уравнение (4) или (5) корректно, если при любых f оно однозначно разрешимо и решение x непрерывно зависит от f. Более точно, говорят, что (линейное) уравнение корректно в паре (E1, E2) банаховых пространств функций на отрезке [a, b], если для любой f E2 уравнение имеет единственное решение x E1 и, кроме того, найдется такая константа C, что ||x||E1 ≤ ||f ||E2.

Разница между уравнениями I и II родов особенно ясно проявляется после записи интегральных уравнений в операторном виде. Суть здесь в следующем. Интегральные операторы в большинстве своем оказываются вполне непрерывными операторами. Для корректной разрешимости уравнения II рода, т. е. уравнения (4) при любой функции f необходимо и достаточно обратимости оператора I – I и ограниченности (I – I)–1, что в случае вполне непрерывного оператора I есть ситуация общего положения. Для разрешимости уравнения I рода необходима обратимость оператора I. В случае же вполне непрерывного оператора I–1 если он существует, необходимо, чтобы он являлся неограниченным [].

Уравнения I рода представляют собой существенно более сложный объект исследования.

§4. Интегральные уравнения с вырожденным ядром и уравнения

типа свертки

Выделим еще два класса линейных интегральных уравнений, часто встречающихся в математическом обиходе [2], [29]. Первый из них состоит из так называемых интегральных уравнений с вырожденным ядром. К ним относят интегральные уравнения, ядро которых представимо в виде

(6)

Интегральные уравнения (скажем, Фредгольма II рода) с вырожденным ядром легко сводятся к системе алгебраических уравнений. Используя (6), уравнение (2) можно переписать в виде

(5)

где

.

Умножение (7) на ηj и интегрирование по t от a до b приводит к системе алгебраических уравнений относительно неизвестных cj:

в которой

,

Уравнение Вольтерры типа свертки выделяется специальным видом ядра K(t, s) = k(ts):

Название наследуется от интегрального оператора свертки

играющего роль умножения в банаховых алгебрах функций. Уравнение типа свертки весьма широко распространено в приложениях.

Уравнение Фредгольма типа свертки выглядит так:

Линейный оператор называется вполне непрерывным, если он переводит каждое ограниченное по норме пространства множество в компактное множество.

Почти во всякой физической задаче, которая может быть сформулирована с помощью линейных операторов, важной характеристикой типа задачи является спектр соответствующего оператора [13]. Одной из основных характеристик спектра оператора является спектральный радиус этого оператора. Напомним, что те значения , при которых уравнение

,

где – рассматриваемый оператор, имеет единственное решение, а оператор ограничен, называются регулярными. Совокупность всех значений , не являющихся регулярными, называется спектром оператора и обозначается . Спектральным радиусом оператора называется число, определенное формулой

, .

Если уравнение

при данном имеет решение, отличное от тривиального, то называется собственным значением оператора , а нетривиальное решение уравнения называется собственным вектором, отвечающим этому собственному значению . При этом собственное значение называется позитивным, если и отвечающий ему собственный вектор принадлежит конусу .

Глава II

Оценки спектральных радиусов интегральных операторов

§1. Сравнение спектральных радиусов двух положительных

операторов

Многочисленные технические, физические, а также экономические задачи приводят к отысканию решения типа

x = Ax + f.

Известно, что данное уравнение будет иметь единственное решение, которое можно найти, используя метод последовательных приближений, если спектральный радиус оператора A меньше единицы.

В терминах понятия спектрального радиуса [20], [24], устанавливаются важнейшие теоремы существования неотрицательного решения соответствующих моделей математической экономики (модель Леонтьева, модель Леонтьева-Форда, обобщенная модель Леонтьева-Форда).

Приведем соответствующее определение.

Пусть А – линейный ограниченный оператор, действующий в банаховом пространстве Е. Вещественное или комплексное число называется регулярным значением оператора А, если оператор

(I - A)

имеет ограниченный обратный, определенный во всем пространстве Е. В противном случае соответствующее число называется точкой спектра оператора А. Совокупность всех точек спектра оператора А обозначается (А).

Спектральным радиусом (А) оператора А называется следующая величина:

.

Для ограниченного оператора А спектральный радиус (А) является ограниченной величиной, более того из принципа Банаха сжатых отображений [23] следует оценка

(А) < A.

Важнейшим фактом теории линейных положительных операторов является следующий факт:

Пусть конус К – нормальный и воспроизводящий, тогда (А) является точкой спектра оператора А (теорема Карлина).

Более того, при несущественных дополнительных предположениях (А) является собственным значением оператора А, которому отвечает собственный вектор x* К (теорема Перрона-Фробениуса [2]).

В теории принципа Хикса для интегрального уравнения с неотрицательным ядром важную роль для его справедливости играет условие вида

r(A)<1, (1)

где r(A) - спектральный радиус интегрального оператора А с ядром K(t,s). Естественно иметь признаки, обеспечивающие выполнение условия (1). Для этого получим соответствующие признаки для случаев, когда А:

10) A=(aij) (i,j=1,2,3…); (2)

20) A – интегральный оператор вида

, (3)

где - ограниченное замкнутое множество из евклидова пространства Rm, K(t,s) – измеримая по s почти при всех значениях t функция, для которой при некоторых p>1 и выполняется условие:

. (4)

При выполнении условия (4) оператор (3), как известно, действует в пространстве Lp() и является вполне непрерывным оператором в этом пространстве [ 29].

Введем в рассмотрение следующие функции

, . (5)

Теорема 1. Пусть для некоторого [0,1] выполняется следующее неравенство

P(t)Q1-(t)1 (t) (6)

и, кроме того, выполняется одно из двух следующих условий:

10) в неравенстве (6) равенство допускается лишь на множестве точек лебеговой меры нуль;

20) в неравенстве (6) строгое неравенство выполняется для всех t из некоторого множества , mes>0, оператор А – неразложим в пространстве Lp().

Тогда спектральный радиус r(A) оператора А в пространстве Lp() меньше чем единица:

r(A)<1.

Аналогичный результат имеет место и в том случае, когда интегральный оператор (3) действует в пространстве C() и неразложим в этом пространстве относительно конуса неотрицательных функций пространства C().

Получению оценок спектрального радиуса положительного оператора по информации о поведении этого оператора на фиксированном ненулевом элементе конуса посвящена достаточно обширная литература [21], [11], [13], [18], [26], [29]. Речь идет о том, что из неравенства вида

,

где - фиксированный элемент из , вытекает оценка снизу

для спектрального радиуса линейного положительного оператора , а из неравенства вида

(7)

(при некоторых дополнительных предположениях [29] относительно элемента и конуса , или оператора ), вытекает оценка сверху для вида

. (8)

Для этого, например, достаточно, чтобы конус был телесным и нормальным, и чтобы был внутренним элементом конуса . Заметим, что без соответствующих дополнительных предположений утверждать о наличии оценки сверху типа (8), очевидно, нельзя. В отличие от оценки сверху, оценка снизу верна при единственном предположении о том, что .

Поставим вопрос существенно шире: что можно сказать о том, что если вместо условия (7) нам известно условие вида

, (9)

где - некоторый линейный оператор, действующий в пространстве ? По аналогии с упомянутой оценкой вида (8) естественно спросить: не следует ли из условия (9) оценка

? (10)

При положительном ответе на этот вопрос получаем возможность иметь как следствия, ранее установленные ([11], [18], [26], [29]) результаты по оценке сверху спектральных радиусов линейных положительных операторов по информации о поведении операторов и на фиксированном элементе конуса .

Теорема 2. Пусть конус - телесен и нормален, - внутренний элемент конуса . и - линейные положительные операторы, действующие в , причем они коммутируют, т.е.

. (11)

Пусть хотя бы на одном фиксированном элементе конуса выполняется неравенство

,

тогда для спектральных радиусов и операторов и справедливо следующее неравенство:

.

Доказательство.

Перейдем в пространстве к - норме [26], [29], которая, во-первых, определена на всем , так как конус телесен, и, во-вторых, эквивалентна норме в , т.к. конус нормален. Тем самым пространство будет полно по -норме. Прежде всего, установим, что для произвольного линейного положительного оператора справедливо равенство

. (12)

Действительно, из неравенства

,

справедливого для любого , в виду положительности оператора следует, что

,

откуда, учитывая монотонность -нормы, получим

,

и, следовательно, по определению нормы оператора

. (13)

С другой стороны, из свойств нормы следует, что

. (14)

Из (14) и (13) следует равенство (12).

Далее, согласно условию (9), свойству (11) и положительности оператора , имеем

. (15)

По индукции легко доказать, что для любого имеет место неравенство

,

и в силу монотонности -нормы

.

Поэтому, согласно (12),

. (16)

Т.к. в силу эквивалентности -нормы и нормы пространства можно написать, что

, , (17)

то из неравенства (16) и равенств (17) следует утверждение теоремы.

Замечание. Теорема 2 верна также и в том случае, когда операторы и полукоммутируют (т.е. ). В доказательстве выражение (15) перепишется в виде:

.

Рассмотрим теперь условия (9) и (10) для строгих неравенств. Т.е. условия, при которых из

следует оценка

. (18)

Прежде, чем перейти к рассмотрению строгих оценок (18), приведем несколько важных теорем, представляющих интерес.

Теорема 3. Пусть и - линейные положительные операторы, действующие в пространстве , причем они коммутируют, т.е. . Пусть оператор неразложим, тогда операторы и имеют общий собственный вектор.

Доказательство.

Пусть - собственный вектор оператора , отвечающий спектральному радиусу . Т.к. операторы и коммутируют, то для любого имеем:

.

Тогда

,

следовательно - собственный вектор оператора , . Т.к. - неразложим, то согласно теореме о единственности (с точностью до нормы) собственного вектора у неразложимого оператора [29]:

,

где .

Тем самым у оператора есть собственный вектор . Т.е. получаем, что у операторов и есть общий собственный вектор .

Теорема доказана.

Важным моментом в доказанной теореме является то, что телесность конуса не предполагается.

Теорема 4. Пусть дана некоторая коммутативная совокупность линейных положительных операторов, из которых хотя бы один является неразложимым. Тогда найдется положительный функционал , такой, что для всех , где для каждого . При этом .

Доказательство.

На основании предыдущей теоремы, можем утверждать, что все операторы из имеют общий собственный вектор ( ), причем .

является собственным значением соответствующего оператора и собственным значением сопряженного оператора , которому отвечают собственный вектор оператора и собственный функционал оператора , где - сопряженная к полугруппа. Из результатов [22], следует, что сопряженные операторы также составляют коммутирующую совокупность линейных положительных операторов . Таким образом, получим

и .

Теорема доказана.

Приведем достаточно известный [22] результат.

Теорема 5. Если , то уравнение

(19)

имеет единственное решение

,

которое является пределом последовательных приближений

(20)

при любом .

Замечание. Сходимость последовательных приближений (20) равносильна тому, что решение (19) может быть представлено сходящимся по норме рядом Неймана

.

Перейдем к рассмотрению строгих оценок.

Теорема 6. Пусть и - линейные положительные операторы, действующие в пространстве , причем они коммутируют, т.е. , и пусть оператор - неразложим и хотя бы на одном фиксированном элементе конуса выполнено неравенство

, ( ).

Пусть выполнено одно из условий:

  1. вполне непрерывен, - квазивнутренний элемент ;

  2. конус телесный и нормальный, - внутренний элемент ;

  3. оператор -ограничен сверху, конус воспроизводящий и нормальный;

  4. оператор -ограничен сверху, конус воспроизводящий и нормальный, - квазивнутренний элемент ;

  5. оператор допускает представление

,

где - вполне непрерывен, , конус воспроизводящий и нормальный, - квазивнутренний элемент ; существует такой элемент , что .

Тогда справедливо строгое неравенство

.

Доказательство.

В силу теоремы 5 уравнение

имеет решение

.

Очевидно, что это решение удовлетворяет неравенству

. (21)

Т.к. - неразложим, то из неравенства (21) следует, что - квазивнутренний элемент . Поэтому при любом ненулевом выполнено неравенство

. (22)

В условиях нашей теоремы существует такой ненулевой функционал , что . На основании теоремы 3 найдется такой собственный элемент оператора , отвечающий собственному значению , который будет также собственным элементом оператора , отвечающим некоторому собственному значению оператора . Тогда

,

и из (22) вытекает

.

Откуда

.

Следовательно,

.

Теорема доказана.

Замечание 1. Теорема 6 верна также и в том случае, когда операторы и полукоммутируют, т.к. если операторы и полукоммутируют, и оператор неразложим, то имеет место равенство:

,

т. е. операторы и коммутируют.

Замечание 2. Используя равенство

можно расширить возможности получения оценок спектрального радиуса: если некоторая степень удовлетворяет условиям теоремы 5, то из неравенства

вытекает оценка

.

Пример. Рассмотрим матрицу и вектор пространства , а также матрицу , коммутирующую с матрицей :

; ; , .

Имеем , , т.е. . Таким образом, выполнены все условия теоремы 6, следовательно

.

В то время как точное значение спектрального радиуса: .

Заметим, что использование коммутирующего оператора способствовало уточнению оценки . Действительно, если в примере воспользоваться неравенством (7), то , и тогда, учитывая (8), получим , а эта оценка намного хуже оценки .

§ 2. Оценки спектрального радиуса интегрального оператора

Существует большое количество результатов по оценке спектрального радиуса матричного оператора. Обзор результатов приведен, например, в работе [26]. Стеценко В.Я. в [29] развил некоторые из оценок на интегральные операторы. Следующая теорема является развитием второго метода Островского для интегральных операторов [26].

Теорема 1 . Пусть - матричное ядро. . Функции , заданны в квадрате , за исключением прямой t=s, , . Пусть r= -спектральный радиус матричного интегрального оператора .Тогда

, где p>0, q>0, 1/p + 1/q =1,

где

. (1)

Доказательство.

Рассмотрим систему

. (2)

Так как - спектральный радиус оператора А, то система линейных однородных уравнений относительно неизвестных имеет ненулевое решение. Выберем решение так, чтобы

(3)

Представим (4)

Вычтем почленно из (2) тождество (4):

.

Так как , то , таким образом:

Применяя неравенство Гельдера для интегралов, и учитывая, что ,

получим:

=

=

согласно (4)

=

учитывая (1) и (3)

.

Возведем обе части в степень q.

, тогда

Проинтегрируем по t

,

учитывая (3) получим:

или

Теорема доказана.

Докажем еще одну теорему, которая является неравенством Фарнелла для интегральных операторов.

Теорема 2. Пусть -непрерывное матричное ядро . Тогда функции , заданные для , порождают действующий и вполне непрерывный оператор в пространстве

.

Пусть -спектральный радиус матричного интегрального оператора в пространстве ,

, ,

докажем, что

.

Для доказательства теоремы рассмотрим систему

. (5)

Эта система имеет ненулевое решение. Выберем решение так, чтобы

(6)

Умножим обе части уравнения (5) на . Получим

. (7)

С учетом (5) ,

тогда (7) запишется следующим образом:

(8)

Умножим обе части выражения (8) на , получим

. (9)

Проинтегрируем обе части выражения (9) по

.

Тогда

Учитывая (6),получим

Из неравенства Гельдера для

получим

.

Следовательно,

.

Теорема доказана.

Получена еще одна оценка сверху для спектрального радиуса интегрального оператора.

§3. Новые оценки спектрального радиуса линейного

положительного оператора

В данном параграфе предлагается дальнейшее развитие оценок спектрального радиуса линейного положительного оператора, заключающееся в том, что сравнивается значение элемента со значением комбинации элементов , где - специальным образом подобранный оператор, причем для получения оценок достаточно знать оценку , а не его точное значение. Результаты, полученные в этом параграфе, являются продолжением работ [11], [18], [26], [29].

Справедлива следующая теорема.

Теорема 1. Пусть воспроизводящий и нормальный конус, и - линейные положительные операторы, причем они коммутируют, т.е. . Пусть - неразложим. Если для некоторого и выполняется неравенство

, (1)

то

.

Характеристики

Тип файла
Документ
Размер
9,54 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее