147892 (594423), страница 5

Файл №594423 147892 (Розробка, дослідження системи керування на основі нейронної мережі) 5 страница147892 (594423) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

На рис. 2.8 приведені результати моделювання (криві перехідних процесів струми навантаження ТАД) скоректованої системи регулювання, що забезпечує виконання необхідних вимог до якісних показників перехідного процесу регулятора вихідної напруги інверторів. Крива 1 – перехідний процес струму навантаження ТАД без урахування корекції; крива 2 – з урахуванням корекції.

    1. Розробка моделі блоку «синхронний генератор-випрямлювач» електропередачі дизель-потягу з використанням нейронних мереж

Аналіз і синтез систем керування складними енергетичними об’єктами, до яких відноситься електропередача дизель-потягу з асинхронним тяговим електроприводом, нерозривно пов’язані з питаннями створення їхніх моделей з метою проведення комплексних досліджень, а також уточненням структури та параметрів пристроїв для розробки.

Питанням моделювання окремих блоків системи керування електропередач потягів присвячено значне число робіт. Однак традиційні підходи викликають труднощі при вирішенні вказаних задач. Тому постійно йде пошук у напрямку створення моделей на основі досягнень сучасних комп’ютерних технологій рішення цих задач, зокрема нейромережевих технологій. Однією із задач при вирішенні цих проблем є адаптація відомих архітектур нейронних мереж для побудови моделей компонентів структури САР енергетичної системи дизель-потягу.

У нашому випадку об'єктом моделювання є блок "синхронний генератор-випрямлювач". Його моделювання виконаємо за допомогою нейронних мереж.

Математичну модель блоку "синхронний генератор-выпрямитель" можна представити сукупністю моделей синхронного генератора (СГ) і випрямлювача (У).

Відповідно до загальноприйнятих допущень математичну модель СГ, що представляє собою ідеалізовану явнополюсну синхронну машину, яка має на роторі обмотку збудження і по одному короткозамкненому контуру в подовжній і поперечній осях, у координатній системі d, q можна представити наступною системою диференціальних рівнянь (2.26):

;

;

; (2.26)

;

,

Де – відповідно потокозчеплення та струми обмоток: статора (по осям d і q), збудження і демпферних (по осям d і q);

– активні опори обмоток статора, збудження та демпферних (по осям d і q);

– кутова частота обертання ротора.

Облік насичення магнітного кола в явнополюсних синхронних машинах зазвичай вироблятися тільки по подовжній осі. Для цього у вираженнях для потокозчеплень індуктивний опір реакції якоря по подовжній осі представляють як функцію подовжньої складовий потокозчеплення в повітряному зазорі . У цьому випадку вираження для потокозчеплень контурів синхронної машини по подовжній осі мають наступний вид:

; (2.27)

; (2.28)

; (2.29)

; (2.30)

, (2.31)

де – відповідно опори розсіювання обмоток статора, збудження та демпферної по осі d;

– опір реакції якоря подовжній осі (2.31).

У результаті рішення системи рівнянь (2.26) з урахуванням виразів (2.27)-(2.31) визначаються струми статорної обмотки по осям d і q - і . Фазні струми СГ , що являються впливом, яке задає, для математичної моделі некерованого трифазного випрямлювача, знаходяться за допомогою лінійних перетворювань:

; (2.32)

; (2.33)

; (2.34)

, (2.35)

де – значення кута при t = 0.

Напруга обурення і визначається згідно до виразів:

; (2.36)

, (2.37)

де - фазні напруги СГ, одержувані за допомогою перетворювача, що формує ці напруги на основі фазних струмів СГ.

Реалізація математичної моделі, заданої системою диференціальних рівнянь (2.26) і рівняннями (2.27) - (2.37) з використанням сучасних пакетів прикладних програм, наприклад пакета MATLAB, не викликає особливих труднощів. Вона зводиться до побудови структури моделі з наявної бібліотеки блоків пакета і розрахунку параметрів моделі.

У ряді випадків моделювання блоку "синхронний генератор-випрямлювач" можна здійснити, використовуючи його навантажувальні характеристики, представлені на рис. 2.9.

Здатність штучних нейронних мереж, навчених на деякій множині даних, видавати правильні результати для досить широкого класу нових даних є дуже вагомим аргументом для побудови моделей різних систем. У даному випадку ця властивість нейронної мережі підходить для створення моделі блоку "синхронний генератор-випрямлювач " за навантажувальними характеристиками. При цьому робота моделі полягає в наступному: на вхід подаються струми збудження (формування струму збудження розглянуто в розділі 2.2) і навантаження , на виході повинне формуватися випрямлена напруга , значення якої відповідає графікам навантажувальних характеристик (рис 2.9.) Причому мережа повинна працювати не тільки на тренувальних шаблонах, але і виконувати поставлену задачу на всіх припустимих значеннях вхідних сигналів.

Рис. 2.9. Навантажувальні характеристики СГ.

Для побудови моделі обрана багатошарова нейронна мережа прямої передачі сигналів із двома нейронами у вхідному шарі (кількість входів), двома схованими шарами й одним нейроном у вихідному шарі. Для нейронів схованих шарів використовувалися нелінійні сигмоїдальні функції активації нейронів.

У результаті моделювання знайдене оптимальне число нейронів для першого і другого схованих шарів мережі, відповідно 10 і 15 нейронів. Для навчання мережі використовувалися дані рис.2.9.

Погрішність відтворення характеристик у всьому робочому діапазоні за допомогою нейронної мережі не перевищувала 1,5%, що краще, ніж у моделей, реалізованих традиційним способом.

3. РОЗРОБКА СИСТЕМИ КЕРУВАННЯ ЗА ДОПОМОГОЮ МЕТОДІВ НЕЧІТКОЇ ЛОГІКИ І НЕЙРОННИХ МЕРЕЖ ДЛЯ ОПТИМІЗАЦІЇ ДИНАМІЧНИХ ПРОЦЕСІВ ЕЛЕКТРОПРИВОДА

3.1 Розробка системи керування електроприводом змінного струму з використанням методів нечіткої логіки та нейроконтролерів

Тяговий електропривод дизель-потяга являє собою конструктивну сукупність тягових асинхронних двигунів, перетворювачів частоти і пристрою керування. Зростання ступеня інтеграції в мікропроцесорній техніці і перехід від мікропроцесорів до мікроконтролерів привів до заміни аналогових систем керування тяговими електроприводами на системи безпосереднього цифрового керування. Перехід до широкодіапазонних (до 1:10000), швидкодіючих електроприводів транспортних засобів, зажадав застосування більш складних структур на основі векторного керування.

При векторному керуванні, на відміну від частотного, керування швидкістю обертання тягового асинхронного двигуна здійснюється за допомогою регулювання амплітуди і фази вектора поля двигуна. Таке керування є найбільш точним у динаміці та статиці, а також більш економічним.

Однак, як при частотному, так і при векторному способі керування, необхідно здійснювати керування процесом розгону дизель-потяга з урахуванням протікання електромагнітних процесів і оптимізації енергетичних витрат, що вимагає у свою чергу створення ефективних систем керування. Як відзначено в розділі 1, одним із критеріїв якості протікання електромагнітних процесів є величина перерегулювання. Задачею системи керування в даному випадку є те, що б величина перерегулювання не перевищувала деякого граничного значення в перехідному режимі. В існуючих системах керування тягових електроприводів ці задачі вирішувалися за допомогою використання ПІД регуляторів і блоків задавання інтенсивності, що формують сигнал керування в залежності від зростання чи убування сигналу керування на виході відповідного ПІД регулятора. В останні роки рішення аналогічних задач пропонується виконувати з використанням сучасних технологій, в основі яких лежать методи аналізу і синтезу складних технічних систем, зокрема систем векторного керування і нейромережевих технологій, використовуючи при цьому пряме цифрове керування моментом. Відмінною рисою цих рішень є гранично висока швидкодія систем керування, реалізованих, як правило, на базі цифрових релейних регуляторів чи регуляторів, що працюють на принципах нечіткої логіки та нейроконтролерів.

У цьому розділі приведені результати розробки моделі системи керування з використанням методів нечіткої логіки для електропривода дизель-потяга з тяговими асинхронними двигунами і порівняльний аналіз за допомогою моделювання динамічних характеристик, у порівнянні з системами керування, побудованими на основі стандартних ПІД - регуляторів.

На рис. 3.1 приведена структура блоку нечіткого контролера швидкості для системи векторного керування двигуном електропривода дизель-потяга. Тут:

БД - блок диференціювання;

НК - нейроконтроллер;

БІ - блок інтегрування;

БВУ - блок векторного управління;

АД- асинхронний двигун;

Е - сигнал помилки;

СЕ - сигнал, пропорційний похідної сигналу помилки;

DU, U - відповідно сигнали на виходах блоків НК і БІ;

, - відповідно сигнал, пропорційний швидкості обертання ротора двигуна і швидкості, що задається (сигнал завдання).

Рис. 3.1. Структурна схема регулятора швидкості.

На вхід нейроконтролера надходять два сигнали: Е и СЕ. Сигнал помилки визначається як :

(3.1)

Зміна значення помилки СЕ визначається похідної сигналу помилки Е як .

Нейроконтролер, на підставі значення сигналу помилки Е установлення швидкості, відповідно змінює вихідний сигнал DU так, щоб поточна швидкість відповідала швидкості, що задається .

У дискретній системі

, (3.2)

де на відрізку часу . Якщо - константа, то значення сигналу CE пропорційно сигналу .

Вихідний сигнал DU нейроконтролера в системі векторного керування асинхронним двигуном електропривода є відповідною величиною струму завдання [20]. Після його інтегрування блоком БІ одержуємо середнє значення на періоді квантування сигналу U, пропорційного струму завдання . Виходячи з фізичного принципу керування системою, алгоритм керування наступний:

якщо E = ZE і СЕ PS, (3.3)

то на виході нейроконтролера формується сигнал

DU = NS. (3.4)

де E і СЕ - вхідні нечіткі змінні;

ZE, PS, NS - невеликі позитивні числа.

Характеристики

Тип файла
Документ
Размер
45,11 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее