126222 (593207), страница 5

Файл №593207 126222 (Исследования свойств штамповой стали после термической обработки) 5 страница126222 (593207) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

2. Изучить зависимость глубины обезуглероженного слоя от температуры закалки.

3. Изучить зависимость размера аустенитного зерна, а значит и пластических свойств, от температуры закалки.

4. Изучить зависимость износостойкости стали от температуры отпуска и типа нанесенного покрытия.

5. Выявить микроструктуру закаленной стали и закономерности растворения карбидов при закалке.

2. Методика исследования

2.1 Материал и обработка

Для проведения исследования была выбрана штамповая сталь для горячего деформирования марки 4Х5МФ1С, выплавленная в условиях завода «Электросталь». Выплавка, разливка и другие операции производились согласно действующей технологической инструкции. Химический состав стали представлен в табл. 4.

Таблица 4. Химический состав стали 4Х5МФ1С

C

Si

Mn

Cr

W

V

Mo

Ni

0,32

1,05

0,35

5,00

1,10

0,80

После выплавки сталь была подвергнута горячей пластической деформации (ковке). Начало ковки при 1160оС, конец – при 850оС. Охлаждение после ковки замедленное. В качестве предварительной термической обработки использовался отжиг, предназначенный для измельчения зерна и получения низкой твердости. Температура отжига составила 850оС. В состоянии поставки сталь имела структуру зернистого перлита.

Далее из поковки диаметром 250 мм были вырезаны образцы размером 10×10×55 мм и подвергнуты окончательной термической обработке в цеховых условиях. Образцы с маркировочными номерами 1, 12, 24, 42, 59 были закалены в камерной печи на температуры 950, 1 000, 1 050, 1 070 и 1 100°C. Охлаждение производилось в масле. Образцы с номерами 2, 30, 31, 34, 35, 69, 70, 89, 91, 92 закалены с температуры 1 070°C и подвергнуты отпуску с разными температурными режимами. Кроме того на образцы 30, 89, 91 были нанесены покрытия из нитрида и оксинитрида титана.

Таблица 5. Режимы термообработки экспериментальных образцов

Маркировка образца

Термическая обработка

Температура закалки, оС

Температура отпуска, оС

1

1

950

2

12

1 000

3

24

1 050

4

42

1 070

5

59

1 100

6

35

1 070

230

7

34

1 070

310

8

31

1 070

400

9

70

1 070

530

10

91

1 070

550

11

30

1 070

570

12

92

1 070

570

13

89

1 070

600

14

69

1 070

650

15

2

1 070

660

2.2 Методы эксперимента

2.2.1 Выявление микроструктуры

Для изучения микроструктуры образцов необходимо, чтобы их поверхность была специально приготовлена. Изготовление микрошлифа сводится к выполнению следующих операций: шлифование, полирование и травление.

Шлифование производилось на шлифовальной бумаге с постепенным переходом от бумаги марки № 12–3 с зернистостью от 125 до 20 мкм к бумаге марки М40–М5 с зернистостью от 28 до 3,5 мкм (ГОСТ 6456–75).

При переходе от одного номера зернистости к другому образец очищался от абразива и менялось направление шлифования на 90° для полного удаления всех рисок, образовавшихся во время предыдущей операции.

Полировка производилась на специальном полировальном станке, диск которого обтянут фетром, с помощью полировальной жидкости. После полировки образец был промыт водой и высушен фильтровальной бумагой.

Для выявления микроструктуры полированную поверхность микрошлифа подвергали травлению. Выбор состава травителя при этом зависел от конкретной поставленной задачи. В работе использовались следующие реактивы:

1) для выявления аустенитного зерна – пятипроцентный спиртовой раствор пикриновой кислоты, усиленный добавками 0,5–1% алкил-сульфата натрия;

2) для отделения реплик при электролитическом травлении применялся десятипроцентный спиртовой раствор азотной кислоты;

3) для выявления микроструктуры при электролитическом травлении – спиртовой раствор треххлористого железа и лимонной кислоты (0,5 г. FeCl3, 0,5 г. лимонной кислоты, 25мл. спирта).

2.2.2 Методика измерения твердости на приборе Роквелла

Измерение твердости производилось на приборе Роквелла с помощью алмазного конуса с углом при вершине 120° и радиусом закругления в вершине конуса 0,2 мм [12]. Суммарная нагрузка составила 1 500 Н (шкала С). Отсчет производился по черной шкале. Перед работой прибор проверялся с помощью эталона соответствующей твердости, после чего вносилась поправка в полученные значения твердости. Количество произведенных измерений не менее пяти для каждого образца.

      1. 2.2.3 Методика измерения микротвердости

Для определения микротвердости исследуемых материалов использовался микротвердомер ПМТ–3 с увеличением 480 крат, принцип работы которого заключается в том, что четырехгранная алмазная пирамида (с углом при вершине между противоположными гранями 136) вдавливается в испытуемый металл под нагрузкой 2 Н.

Длина диагонали отпечатка определялась по формуле

Значения микротвердости определялись по формуле

(1)

где P – нагрузка на пирамиду, г;

d – длина диагонали отпечатка, мкм.

При измерении необходимо учитывать неизбежный разброс полученных значений вследствие влияния соседних структурных составляющих с иной твердостью, различной толщины испытуемых элементов структуры, ошибки измерения и других причин. Для возможности статистической обработки результатов эксперимента на каждом образце проводили не менее шестидесяти замеров.

2.2.4 Методика определения глубины обезуглероженного слоя

Глубину обезуглероженного слоя определяют различными способами:

1) металлографическими методами, сущность которых заключается в определении глубины обезуглероженного слоя по структуре под микроскопом после соответствующей термообработки и травления;

2) методом замера термоэлектродвижущей силы на обезуглероженной и необезуглероженной поверхностях образца;

3) методом замера твердости;

4) химическим методом. [13]

В данной работе использовались методы замера твердости и микротвердости.

Метод замера твердости заключается в замере твердости образцов, подвергнутых термической обработке [13]. Замеры твердости производились на приборе Роквелла по ГОСТ 9013–59 непосредственно на поверхности образцов. Образец считали необезуглероженным, если его твердость соответствовала норме твердости, установленной по измерениям на необезуглероженной поверхности. В противном случае с поверхности снимался слой металла толщиной до 0,02 мм, и измерения повторялись. Количество проведенных измерений в каждом случае не менее пяти.

Метод замера микротвердости был реализован с помощью микротвердомера ПМТ–3. При измерениях учитывалось расстояние от обезуглероженной поверхности образца. Для возможности статистической обработки полученных данных было проведено по 10 замеров на каждом зафиксированном расстоянии от поверхности.

2.2.5 Выявление и определение величины аустенитного зерна

Выявление аустенитного зерна

Выявление зерна можно производить различными способами: методом окисления, методом цементации, методом нормализации, методом высокотемпературной металлографии [14].

В данной работе был использован метод окисления. Одна плоскость образцов заданной марки стали была последовательно отшлифована на грубой и тонкой наждачной бумаге. Приготовленные образцы помещены в печь обработанной стороной вверх. Заданный технологический режим находился под контролем. Известно, что кислород атмосферы печи, окисляя поверхность металла, наиболее интенсивно проникает по границам аустенитных зерен, и декорирует их. Образцы, охлажденные в воде и отшлифованные тем же номером наждачной бумаги с расчетом, чтобы на поверхности шлифа сохранилось 10–12% окалины (т.е. делался косой шлиф), были отполированы и потравлены [7].

В качестве травителя был применен пересыщенный водный раствор пикриновой кислоты, который сильнее воздействовал на участки, обогащенные кислородом. Избирательное действие пикриновой кислоты усиливалось добавками 0,5–1% алкил-сульфата натрия, а также травлением с той же добавкой в течение 40–50 минут при 80–85оС. По окончании травления шлиф был промыт холодной водой. Произведенное далее легкое полирование улучшило четкость выявленных границ, так как позволило удалить следы травления, окрашивающие поверхности зерен в разные цвета. [1]

Определение величины аустенитного зерна

Определение величины зерна может быть выполнено различными методами. В данной работе использованы следующие из них:

1) метод визуального сравнения видимых под микроскопом зерен с эталонной шкалой;

2) метод случайных секущих;

3) метод измерения длин хорд.

Метод определения величины зерна сравнением с эталонными шкалами. Величину зерна в работе определяли методом сравнения под микроскопом при увеличении 400 путем просмотра площади шлифа и сравнения видимых зерен с эталонной шкалой на увеличение 400 [14].

После просмотра десяти полей зрения шлифа, был установлен номер зерна, по которому можно дать количественные характеристики структуры, в частности, расчетный диаметр зерна.

Метод случайных секущих. Метод состоит в подсчете пересечении границ зерен случайной секущей. Такой секущей служит средняя линия окуляр – микрометра. Данным методом определяется средний условный диаметр – в случае равноосных зерен или количества зерен в 1 мм3 – в случае неравноосных зерен.

Для определения среднего размера зерен исследуемый образец был установлен на микроскоп и подсчитано количество зерен (число пересечений), укладывающихся на длине линейки окуляра. Увеличение микроскопа подобрано таким образом, чтобы на длине линейки окуляра укладывалось не менее 10 зерен.

Таких подсчеты были сделаны в пяти полях зрения для каждого образца.

Средний условный диаметр зерна (dср)

dср = (L/n) × Z, мм (2)

где L – суммарная длина всех отрезков в делениях окуляр-микрометра;

n – общее число зерен, пересеченных отрезками, длиной L;

Z – цена деления окуляр-микрометра для увеличения, при котором проводили подсчет пересечений зерен.

Для определения цены деления окуляр-микрометра вместо шлифа на столик микроскопа в работе устанавливали объект-микрометр, представляющий собой пластину, в центре которой имеется линейка с известной ценой деления (0,01 мм). После совмещения начальных делений обеих шкал объект-микрометра и окуляр-микрометра было подсчитано количество совпадающих делений. Цена деления окуляр-микрометра

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее