125457 (593116), страница 6
Текст из файла (страница 6)
При обработке ила необходимо действовать таким образом, чтобы количество возникающего и вывозимого осадка было чем меньше, концентрация выше, и чтобы не испарялись из осадков неприятные запахи.
Объекты, издающие неприятные запахи, необходимо накрыть и вытянутый загрязнённый воздух очистить в биофильтрах.
Задачей способов обработки (технологической схемы) является такая трансформация осадка, чтобы в меньшей мере нагружать окружающую среду не угрожать здоровью людей, и не влиять отрицательно на воду, почву и растительность.
Можно отметить, что задача снижения содержания вредных веществ в осадке имеет два направления:
- снижение вредных, способных к аккумуляции, веществ в осадке путём строгого ограничения их содержания в сточной воды (данное ограничение, в настоящее время, распространяется только на тяжёлые металлы, а ксенобиотические органические загрязнители почти бесконтрольно могут попадать в сточную воду и оттуда в осадок).
- обработка осадка таким способом, чтобы содержание вредных веществ в обработанном осадке было меньше чем в исходном, сыром осадке.
Дальнейшее естественное требование, чтобы все это было недорого, не загрязнялась окружающая среда, оборудование работало надежно.
С технико-технологической точки зрения обработки осадка выбирается тот метод, который в данной среде предоставляет лучшее решение проблемы размещения осадка.
Рассматриваются три варианта размещения осадка:
- сельскохозяйственное использование, где критической точкой является наличие вредных веществ;
- складирование, где обеспечение необходимой площади является весьма трудной задачей;
- сжигание, для которого необходимо дорогостоящее оборудование, возникает проблема очистки дымовых газов, размещение золы, считающейся опасным отходом.
Обработка, предшествующая складированию, служит для того, чтобы осадок:
- занимал наименьшую площадь;
- на занимаемой территории не вызывал эпидемические и экологические проблемы.
Обработка осадка, предшествующая складированию обычно включает:
- уплотнение образующихся осадков;
- анаэробная стабилизация уплотненного осадка;
- обезвоживание стабилизированного ила; [7]
Предлагаемая система обработки осадков показана на рисунке 15.
3.1 Сгущение сырого осадка и избыточного ила
Любая схема технологи обработки осадка начинается с его сгущения.
В различных технологиях обработки осадка, сгущение имеет экономический характер. Значительное снижение количества ила (до 15 – 30 %) позволяет снизить размеры технологического оборудования и объектов обработки осадков, одновременно снизив инвестиционные расходы.
Сгущение должно проводиться быстро, чтобы предотвратить процессы гниения. Попадание в атмосферу запахов может снижаться дозировкой щелочных реагентов (например, гидрата извести).
Для сгущения осадка используются гравитационные сгустители и механические сгустители, работающие по разным принципам. Сегодняшняя практика обработки избыточного ила однозначно отдаёт предпочтение механическому сгущению:
- смешивание сырого и избыточного активного ила в предварительных отстойниках (производство смешанного ила) часто сопровождается всплытием ила, ухудшающим эффективность обработки.
- в процессе гравитационного сгущения ила, в сгустителе ил часто занимает одновременно верхние и нижние слои и препятствует отбору водной фазы.
- в случае гравитационного сгущения смешанного осадка и ила концентрация недостаточно высокая и поэтому значительно увеличивается гидравлическая нагрузка на метантенки.
Избыточный ил труднее поддаётся сгущению и склонен к всплытию. На практике имеются хорошо зарекомендовавшее себя оборудование разных принципов действия, которое решает проблему раздельного сгущения избыточного ила.
Рисунок 11 – Предлагаемая схема обработки осадков
Декантировочные центрифуги непрерывного действия с горизонтальной осью, применяемые для обезвоживания ила, пригодны и для сгущения ила. Однако опыт последнего времени показывает, что их применение сопровождается высоким расходом электроэнергии и высокими инвестиционными расходами.
Более выгодными инвестиционными и эксплуатационными характеристиками обладает оборудование, работающее по принципу фильтрации. Механические сгустители могут иметь разное конструктивное исполнение:
- Барабанные сгустители, в которых поверхность вращающегося барабана является фильтрующей поверхностью.
- Ленточные системы, похожие на ленточные фильтр-прессы, используемые для обезвоживания, но имеющие значительно более простую механическую конструкцию.
В качестве фильтрующей поверхности в обеих системах используется полимерная ткань, схожая с фильтром ленточных фильтр-прессов. Барабанные машины часто оснащаются металлическим фильтрами, похожими на вращающиеся барабанные тонкие решётки.
Пористость фильтрующей поверхности должна составлять 0,2 – 0,5 мм. Из этого следует, что хлопья ила должны быть крупнее прозора фильтра. Поэтому сгущение ила возможно только после предварительной дозировки полиэлектролита.
В основном пористость фильтрующей поверхности определяет гидравлическую нагрузку и нагрузку по сухому веществу. Чем пористее фильтр, тем больше на него нагрузка. Однако увеличение водопропускной способности фильтров (увеличение отверстий или увеличение прозора) ограничено, потому что чем грубее поверхность, тем больше твёрдой массы илостного характера проходит через неё.
Гидравлическая нагрузка и нагрузка по сухому веществу данного сгустителя находятся в обратной зависимости. Чем ниже концентрация исходного ила, тем меньше нагружаемость сгустителя по сухому веществу.
Количество дозировки полиэлектролита перед сгущением ила зависит от показателей осаждаемости и обезвоживаемости ила. На практике очистных сооружений при благоприятных условиях потребность полиэлектролита составляет около 4-5 г/кг, а в случае плохо осаждаемого ила это значение может достичь 10 г/кг.
Сгустители фильтрующего типа должны регулярно промываться водой под напором. Для промывки используется вода без содержания взвешенных веществ (вода
после сгустителя, очищенная сточная вода, водопроводная вода).
Механическое сгущение сырого осадка считается нецелесообразным по следующим причинам:
- сырой ил без добавления полиэлектролита эффективно сгущается в традиционных гравитационных сгустителях. Содержание сухого вещества в иле составляет 4 - 6%, таким образом, ил соответствует условиям сбраживания.
- трудно и дорого предотвращать возникновение неприятного запаха в процессе механического сгущения.
- повышенное содержание жира в иле приводит к более частому засорению поверхности фильтра.
С учётом всего этого выбираем механическое сгущение избыточного ила с предварительным полиэлектролитным кондиционированием. Аппарат для сгущения барабанного типа.
Для сгущения отдельно полученного сырого осадка предлагаем использовать традиционный гравитационный сгуститель с тангенциальным протоком. Для избежания распространения запахов объект предлагается накрыть. Удаляемый воздух нужно откачивать и чистить в биофильтре [8].
3.2 Сбраживание (стабилизация) смешанного, сгущённого ила
Ил, возникающий в процессе очистки сточных вод, может быть стабилизированный или нестабилизированный. Данное свойство зависит от септичности ила (присутствие различных микроорганизмов) и содержания в нём органических веществ, являющихся питательной средой для микроорганизмов. Ил является тем менее стабильным, чем больше в нём содержание биологически разлагаемых веществ, то есть раньше начинается процесс сбраживания, сопровождаемый неприятными запахами.
Стабилизация осадков это не что иное, как ограничение возможности протекания вредных микробиологических процессов, вызывающих неприятные запахи (в значительной части процессов это означает уменьшение количества ила). Стабилизация достигается двумя принципиальными решениями:
- эффективным удалением содержания биологически разлагаемой органики в осадке;
- уничтожением микроорганизмов (обеззараживание).
В многоступенчатом процессе обработки осадка, направленного на снижение его количества и негативного воздействия, два способа стабилизации не всегда могут быть разделены. Так называемые термофильные методы биологической стабилизации одновременно решают обе задачи, тогда как остальные методы (сбраживание при мезофильной температуре, сушка и т.д) могут решить только одну из этих задач.
Стабилизации ила главным образом основана на удалении разложении органических веществ, то есть на уничтожении органики, служащей пищей для микроорганизмов. Существует два главных направления:
Снижение количества биологически разлагаемой части органики ила чаще всего проводится после сгущения.
На больших очистных сооружениях сточных вод традиционным методом стабилизации сырого и избыточного ила является сбраживание. В этом случае биологически разлагаемую органическую часть ила анаэробные микроорганизмы перерабатывают в биогаз. В результате процесса стабилизации ила коммунальных сточных вод 50% исходного количества органики разлагается, с образованием биогаза, содержащего 65% метана, около 33 - 34% С02, немного азота, сероводорода, водорода. Из 1 кг разложенной органики образуется около 700 - 900 л биогаза [9].
Сбраживание может происходить в двух температурных интервалах. В традиционных системах температура мезофильного сбраживания 30 - 38°С. При такой температуре сбраживание выполняет только функцию стабилизации, потому что за 15 - 25 дней нахождения ила при такой температуре соотношение гибели патогенных микроорганизмов и яиц составляет пропорцию 1:2.
С точки зрения эффективности уничтожения патогенов, термофильный метод сбраживания (при температуре 50 - 60°С) является более совершенным. При такой температуре процесс сбраживания протекает быстрее (необходимое время нахождения ила всего 8 - 10 дней), чем при мезофильной температуре, при этом патогенные микроорганизмы практически полностью погибают.
Стабилизация ила сбраживанием имеет следующие традиционные преимущества:
- значительный объём метантенка сглаживает все количественные и качественные колебания поступающего осадка;
- обезвоживаемость стабилизованного ила значительно лучше, чем необработанного;
- использование биогаза в газовом двигателе значительно может снизить расход электроэнергии очистных сооружений;
- в результате сбраживания значительно сокращается количество обезвоживаемого и в последствии складируемого осадка;
- в связи с закрытостью метантенка легко справиться с неприятным запахом, который образуется при обработке осадка (при дальнейшей обработке ила запахи будут возникать также в минимальном размере).
Образующийся на очистных сооружениях смешанный осадок с точки зрения сбраживания относится к хорошо сбраживаемому.
Эффективность процесса анаэробного сбраживания оценивается по степени распада органического вещества, количеству и составу образующегося биогаза, которые, в свою очередь, определяются химическим составом осадка, а также такими основными технологическими параметрами процесса, как доза загрузки метантенка, температура, концентрация загружаемого осадка. Кроме того, существенную роль играют такие факторы, как режим загрузки и выгрузки осадка, система его перемешивания и другое
В органическом веществе основную часть (до 80%) составляют жиры, белки и углеводы. Именно за счет их распада образуется все количество выделяющегося биогаза, в том числе 60—65% за счет распада жиров, остальные 40—35% приходятся примерно поровну на долю углеводов я белков. Отсюда следует, что при сбраживании осадков первичных отстойников, содержащих больше жиров, образуется больше газа, чем при сбраживании активного ила, в котором больше белков, даже при очень длительной продолжительности пребывания осадка в метантенке указанные компоненты органического вещества распадаются не полностью. Имеется максимальный предел сбраживания и, следовательно, максимальный выход газа
Пределы распада не зависят от температуры, но скорости распада каждого компонента с повышением температуры возрастают.
Процесс брожения необходимо осуществлять при выбранном оптимальном температурном режиме, даже кратковременное нарушение которого, особенно в сторону снижения температуры, приводит к торможению стадии метаногенеза, накоплению кислот за счет активной работы более устойчивых гидролитических организмов, нарушению трофических связей и процесса в целом.
Температурный режим сбраживания тесно связан со временем пребывания осадка в метантенке или суточной дозой загрузки метантенка по объему (%), а также количеством органического вещества загружаемого 1 осадка на единицу рабочего объема метантенка (кг/м3). Если максимальный распад органического вещества, как указывалось выше, зависит только от его химического состава, то с уменьшением продолжительности сбраживания, т.е. с повышением дозы загрузки, распад органического вещества и выход газа снижаются при всех температурных режимах. В зоне термофильных температур это снижение происходит медленнее, чем в зоне мезофильных температур. Отсюда следует, чем выше доза загрузки, тем выше преимущества температурного процесса по степени распада и выходу газа [10].
В связи с этим термофильный режим сбраживания, в основном применяемый в нашей стране, имеет преимущества перед мезофильным, так как. позволяет уменьшить объемы метантенков, кроме того, обеспечивает глубокое обеззараживание осадков не только от поточной микрофлоры, но и от гельминтов. Однако, недостатком термофильного сбраживания является низкая водоотдающая способность сброженного осадка, что требует его промывки при последующем механическом обезвоживании. В свою очередь, мезофильный режим сбраживания не обеспечивает обеззараживания осадка, требует больших объемов метантенков, но позволяет получить сброженный осадок, лучше поддающийся последующему обезвоживанию.
С экономической точки зрения самым значительным недостатком термофильного технологического способа является потребность в тепловой энергии, которая по сравнению с мезофильным способом приблизительно в два раза больше. Эту тепловую энергию нужно будет выплачивать в качестве эксплуатационных расходов ежедневно.
Значительным недостатком термофильного решения является также и то, что для этого решения требуется более сложное технологическое оборудование, которое по этой причине представляет собой более существенный эксплуатационный риск, а также














