123981 (592879), страница 4
Текст из файла (страница 4)
Посадочное место шпинделя по DIN 55026: A8 (A11)
Мощность привода (100% / 40%): 18,5/22 кВт;
Диапазон частот вращения: 44-4000 об/мин
Габариты станка:
длина: 2640мм;
высота: 2850мм;
ширина: 3100мм;
Масса станка: 4560кг.
Для закрепления обрабатываемой детали используется гидравлический трехкулачковые патроны.
Далее для каждого случая обработки по каталогам и рекомендациям ведущих мировых производителей высокопроизводительного инструмента [11] назначаем инструмент и заносим данные в табл.7
Таблица 7
№ оп. | Наименование операции | Режущий инструмент | Оборудование | Приспособление | Мерительный инструмент |
1 | 2 | 3 | 4 | 5 | 6 |
010 | Отезня | Ленточная пила | - | - | Рейсмас, штангенциркуль |
020 | Токрная | Резец 2120-0055 ГОСТ 18877-73 Сверло 2301/0057 ГОСТ 1090377 | 1К62 | Патрон 3-х. | Штангенциркуль ШЦ-I-250-0,05 Штангенглубиномер ШГ-160-0,1 |
030 | Токрная | Резец 21200055 ГОСТ 1887773 | 1К62 | Патрон 3-х. | Штангенциркуль ШЦ-I-250-0,05 Штангенглубиномер ШГ-160-0,1 |
040 | Токарно - фрезерная | Резец DCLNL 2525M12 Резец CFIL2525M04 Резец S16S-MCLNL07 Фреза 34200-MEGA Сверло SD200-C45-8R1 Метчик GUHRING 00315-8.000 M5 Сверло SD203A-14.0-37-14R1-M Резец A16Q-GGEL 0313 | СТХ 420 | Патрон 3-х. | Индикатор ИРТ Штангенрейсмас ШР-250-0,05 Радиусомер Штангенциркуль ШЦ-I-250-0,05 |
050 | Слесарная | Напильник плоск.туп. 2820-0015, шарошка, надфиль | |||
060 | Контроль | Стол КС10.08 |
1.14 Выбор и расчет припусков и операционных размеров
Величина припуска влияет на себестоимость изготовления детали. При увеличенном припуске повышаются затраты труда, расход материала и другие производственные расходы, а при уменьшенном приходится повышать точность заготовки, что также увеличивает стоимость изготовления детали.
Для определения припуска на обработку и предотвращения перерасхода материала применяют аналитический метод для каждого конкретного случая с учётом всех требований выполнения заготовок и промежуточных операций. Аналитический метод определения припусков базируется на анализе производственных погрешностей, возникающих при конкретных условиях обработки заготовки. Произведем определение припусков аналитическим методом на пов.26, при этом, учитывая многоинструментальную наладку на каждой из операций в маршруте. Определим минимальный припуск на обработку Zimin, который при обработке наружных и внутренних поверхностей вращения определяется по формуле:
где: RZ - высота микронеровностей поверхности, оставшихся при выполнении предшествующего технологического перехода, мкм;
Т - глубина дефектного поверхностного слоя, оставшегося при выполнении предшествующего технологического перехода, мкм;
- суммарные отклонения расположения, возникшие на предшествующем технологическом переходе, мкм;
- величина погрешностей установки заготовки при выполняемом технологическом переходе, мкм.
Значение пространственных отклонений для заготовки исходит от удельной кривизны из расчета на 1 мм заготовки [3]:
з = к l= 0,6 72,5 = 43,5 мкм.
Суммарное значение пространственных отклонений для сверления равно векторной сумме удельного увода сверла при сверлении к и смещения оси отверстия при сверлении Со [3]:
Отклонения при черновой обработке рассчитаем по эмпирической формуле [3]:
р.черн. = kу заг. = 0,06 43,5 = 2,61 мкм
Отклонения при чистовой обработке обычно исключают при расчетах из-за их малой величины. Сверление и черновое растачивание выполняются за один установ, поэтому погрешность установки при обработке [3]:
Погрешность в данном случае возникает за счёт зазоров, возникающих в станочных приспособлениях, эту погрешность устанавливает конструктор, в нашем случае по данным технической документации на станок эта погрешность равна 3 мкм.
Погрешность закрепления заготовки з = 0 мкм, т.к. патрон гидравлический самоцентрирующийся мкм. Тогда погрешность установки при сверлении и черновом растачивании:
Остаточная погрешность установки при чистовом растачивании: р.чист. = 3 мкм. Допуск и шероховатость поверхности на окончательных технологических переходах (операциях) принимают по рабочему чертежу.
Соответственно заданным условиям устанавливаем минимальные припуски при:
Сверлении
черновом растачивании
чистовом растачивании
Исходные и расчётные данные по каждой операции на конкретную обрабатываемую поверхность в технологической последовательности заносим в таблицу 8.
Таблица 8
Расчет припусков и предельных размеров для пов.34
Маршрут обработки пов.34 | Элементы припуска, мкм | Минималь ный расчетный припуск 2 | Максимальный расчетный размер | Допуск | Предельные принятые размеры, мм | Предельные значения принятых припусков, мкм | ||||||||
| Т | ρ | ε | | | | | |||||||
Прокат | 150 | 250 | 43,5 | - | - | 17,999 | - | - | - | - | - | |||
Сверление | 40 | 60 | 42,7 | 3 | 2443,6 | 18,211 | 250 | 18,461 | 18,961 | - | - | |||
Растачивание предвар. | 50 | 50 | 2,61 | 3 | 2285,6 | 18,801 | 100 | 18,901 | 18,701 | 746 | 440 | |||
Растачивание оконч. | 20 | 52 | - | 3 | 2103,9 | 19,052 | 62 | 19,052 | 22,052 | 299 | 161 | |||
Итого: | 1045 | 601 |
1.15 Выбор и расчёт режимов резания
Выбор и расчет режимов резания производим с учетом рекомендаций источников [11]. Для операций 040 "Токарная с ЧПУ".
При назначении режимов резания будем руководствоваться тем, что обрабатываемая деталь имеет тонкие стенки, а также то, что используемое приспособление по причине своей конструктивных особенностей не желательно подвергать вращению с высоким числом оборотов.
Операция 040 Токарная с ЧПУ.
Данная технологическая операция предусматривает обработку последовательную черновую обработку каждого из рукавов детали.
Установ 1. ИП1. Торцевать пов. () t=2,5мм; VC=120м/мин; f=0,15мм/об.
Определим основное технологическое время:
ТО=ТО1+ТСМ+ТБ.П,
где ТО1 - время движения инструмента с рабочей подачей
ТСМ - время автоматической смены инструмента, ТСМ=5.6сек.
ТБ.П - время быстрого подвода и переходов инструмента ТБ.П=8…10% от ТО1.
ТО=0,05+0,1+0,0005=0,1505 мин
ИП2. Расточить поверхности t=2; VC=150м/мин; f=0,14мм/об.
Определим основное технологическое время:
ТО=ТО1+ТСМ+ТБ.П,
где ТО1 - время движения инструмента с рабочей подачей
ТСМ - время автоматической смены инструмента, ТСМ=5.6сек.
ТБ.П - время быстрого подвода и переходов инструмента ТБ.П=8…10% от ТО1.