123662 (592845), страница 4

Файл №592845 123662 (Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля) 4 страница123662 (592845) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

1. усовершенствовать математическую модель функционирования «установка-индуктор-заготовка»;

2. исследовать энергосиловые и температурные условия функционирования индукторов различной геометрии;

3. разработать методику проектирования геометрии спирали индуктора, позволяющую наиболее эффективно реализовать процесс обжима трубчатой заготовки;

4. разработать математическую модель функционирования многоблочной магнитно-импульсной установки при неодновременном разряде блоков конденсаторных батарей и обосновать выбор временного интервала включения очередного блока конденсаторных батарей в разрядную цепь;

5. разработать ряд технологических процессов сборки трубчатых заготовок с использованием энергии импульсного магнитного поля.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В СИСТЕМЕ «УСТАНОВКА-ИНДУКТОР-ЗАГОТОВКА» ДЛЯ МИОМ

2.1 Основные соотношения электромеханики твердых тел

Принципиальная схема магнитно-импульсной установки приведена на рис.2.1. Через повышающий высоковольтный трансформатор и выпрямитель производят зарядку конденсаторной батареи, состоящей из групп параллельно включенных между собой импульсных конденсаторов. По окончании заряда конденсаторная батарея с помощью специального коммутирующего устройства-разрядника тригатрона разряжается на индуктор, внутри которого размещается заготовка.

Рис. 2.1. Принципиальная схема МИУ: 1- трансформатор повышающий; 2 - накопитель энергии (батарея конденсаторов);

3 -поджигающие устройства (разрядник); 4 - индуктор;

5 – заготовка

В момент разряда конденсаторной батареи в индукторе протекают импульсные токи, распределенные по сечению весьма неравномерно, соответственно распределены силы и температуры. Их распределение влияет как на деформацию заготовки, так и на прочность и стойкость самого индуктора.

Для учета сложного характера электромеханических процессов, протекающих в системе «установка – индуктор - заготовка», необходимо получить общую систему уравнений, учитывающую взаимное влияние электродинамических и механических процессов.

Далее рассматриваемую систему тел, в которой протекают электромеханические процессы, будем называть электромеханической системой.

Модель электродинамических процессов в электромеханической системе строилась на основе следующих гипотез:

  1. токами смещения можно пренебречь по сравнению с токами проводимости;

  2. в системе «установка-индуктор-заготовка» отсутствуют ферромагнетики.

  3. распределение токов, а, следовательно, объемных сил и температур симметрично относительно оси индуктора. Многовитковый индуктор представляется как набор электрически связанных витков;

  4. деформации и перемещения индуктора по сравнению с заготовкой, считаем, малы, поэтому задача механики для индуктора не решаем;

  5. заготовку будем считать осесимметричной, а ее материал – упруго-пластическим;

  6. время процесса мало, и теплопередача не происходит.

Первое предположение избавляет от необходимости исследования поля в диэлектриках. Оно может быть вычислено через токи, текущие в проводниках. Считается, что все возмущения поля мгновенно распространяются в исследуемой области.

Второе предположение дает возможность исключить влияние пути изменения магнитного поля на свойства материала и таким образом линеаризовать задачу.

Приведенные выше предположения приводят к квазистатической задаче электродинамики. Уравнения Максвелла в этом случае:

,

(2.1)

,

(2.2)

,

(2.3)

,

(2.4)

где - вектор магнитной индукции, Тл; - напряженность электрического поля, В/м; - напряженность индуцированного электрического поля, В/м; - плотность тока; 0 - магнитная постоянная; 0=410-7;  - относительная магнитная проницаемость.

Для замыкания системы необходимо добавить закон Ома с учетом движения среды и напряженности стороннего электрического поля , создаваемого батареей конденсаторов и закон сохранения заряда:

,

(2.5)

,

(2.6)

где - удельная проводимость материала, 1/(Омм), а v- cкорость в данной точке и закон сохранения заряда, -плотность заряда.

Выражение для вектора плотности пондеромоторных сил имеет вид

.

(2.7)

Для описания движения элементов электромеханической системы в систему уравнений были введены уравнения движения деформируемого твердого тела с учетом гипотезы о малых деформациях:

(2.8)

, j = 1..3

(2.9)

где , - компоненты симметричных тензоров напряжений и деформаций, - компоненты вектора перемещений, - компоненты вектора пондеромоторных сил.

Эти уравнения являются общими как для упругих, так и для упруго-пластических сред.

Для упругой среды связь напряжений и деформаций можно записать в виде

,

(2.10)

где - объемный модуль, - упругий модуль сдвига, .

А для пластической среды использовать, например, основные соотношения теории пластического течения:

1) Приращение деформации на шаге по времени складывается из приращения упругой деформации и пластической

. (2.11)

2) приращение пластической деформации может быть получено из ассоциированного закона пластического течения

. (2.12)

В данной задаче в качестве условия текучести принят критерий Мизеса

.

Здесь - напряжения в элементе, - предел текучести, Аp - работа пластического формоизменения.

Для описания нагрева проводников при условии адиабатности процесса применимо выражение

,

(2.13)

где  – плотность материала; с – удельная теплоемкость материала; t - время процесса.

Приведенные выше уравнения достаточны для расчета электромагнитного поля, плотности тока, перемещений, напряжений и деформаций в любой точке исследуемой электромеханической системы, если задать начальные и граничные условия.

Спецификой уравнений Максвелла является то, что выделяют 2 типа граничных условий: условия сшивания полей в разных областях, являющиеся следствием интегральной формы уравнений Максвелла, и граничные условия на бесконечности. Первые выполняются автоматически после перехода от дифференциальных уравнений к интегральным уравнениям относительно потенциалов, а вторые - за счет рассмотрения токов в конечной области.

Граничные условия задачи механики сводятся к заданию на части поверхности Г1 напряжений, а на части Г2 – перемещений:

.

(2.14)

Начальные условия задают распределения плотности тока , напряженности стороннего электрического поля , перемещений и скоростей в момент начала процесса:

.

(2.15)

где r – радиус-вектор, u0 - начальное перемещение; v0 - начальная скорость.

В уравнения Максвелла входят параметры электромагнитного поля. Оно существует не только в проводниках, но и в окружающей элементы электромеханической системы среде. Чтобы исключить необходимость рассмотрения поля вне проводников, в системе уравнений электродинамики параметры магнитного поля были выражены через плотность тока. С целью обеспечить тождественное выполнение равенства (2.1), введем векторную функцию , называемую векторным потенциалом магнитного поля, так что

.

(2.16)

Тогда уравнение (2.2) перепишется в виде

.

(2.17)

Или, полагая и =const,

,

(2.18)

где - оператор Лапласа.

Уравнение (2.4) преобразуется следующим образом:

.

(2.19)

Решение уравнения (2.18), исчезающее на бесконечности, имеет вид:

,

(2.20)

где а, b – радиус-векторы двух произвольных точек, принадлежащих проводникам, V – объем, занимаемый проводниками.

Подставим и в выражение закона Ома

(2.21)

Используя выражение (2.20) и преобразовывая двойное векторное произведение, дифференцируя (2.20) по времени и пренебрегая скоростями, получим

или после преобразований

(2.22)

Получили интегральное по пространству и дифференциальное по времени уравнение относительно плотности тока. Все дальнейшие уравнения для математической модели электродинамических процессов будут основаны на (2.22).

2.2 Математическая модель электродинамических процессов в одновитковом индукторе

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7019
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}