113796 (591426), страница 15

Файл №591426 113796 (Развитие логического мышления учащихся при решении задач на построение) 15 страница113796 (591426) страница 152016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 15)

Знание геометрических мест точек, обладающих определенным свойством, облегчает нахождение реше­ния для многих практических задач. Например, для ре­шения задач на сопряжение окружностей и прямых, с ко­торыми учащиеся встречаются довольно часто на уро­ках труда в школьных мастерских при опиливании криволинейных поверхностей (изготовление дуги для лобзика, отвертки, гаечного ключа и т. п.), при изготов­лении приборов, пособий для школы, которые они часто делают не по чертежам, а по техническим рисункам, не выполняя деталировки каждой детали, необходимо знать соответствующие геометрические места. Без знания геометрических мест центров окружностей, касающихся данных прямых или окружностей при определенных ограничениях, семиклассники не смогут на уроках чер­чения понять способы решения задач на сопряжение углов дугами, сопряжение окружности с прямой при помощи дуги данного радиуса и т.п.

Следует учитывать, что понятие «геометрическое ме­сто точек» необходимо и в курсе алгебры при изучении графиков простейших функций в VII-VIII классах. График функции определяется как геометрическое место точек плоскости, координаты которых являются соответственными значениями аргумента и функции. Понятие графика необходимо и в курсе физики, где в последние годы все большее значение приобретает графический метод.

В VI-VII классах нельзя отказываться и от решения задач на построение методом геометрических мест, од­ним из основных методов конструктивной геометрии.

Решая задачи на построение, учащиеся учатся при­менять свои знания, ибо они должны сами отвечать на поставленные вопросы. В настоящее время главной задачей учителей математики является не столько сообще­ние математических фактов, определений, формул, тео­рем, сколько необходимость учить детей мыслить, учить их самостоятельно работать.

2. Учащиеся VI класса не сразу сознательно, глубоко усвоят понятие «геометрическое место точек». Важно, чтобы они с данными словами связывали более полную группу геометрических фигур, чтобы понятие охваты­вало целый класс, а не один – два отдельных примера. Учащиеся должны видеть различные примеры геометри­ческих мест точек в различных формулировках, чтобы на основе анализа и синтеза осознать общность этого понятия, охватывающего обширный класс геометриче­ских фигур, создать себе соответствующее представление об этом понятии.

Трудным для понимания шестиклассников является и абстрактное понятие «множество». Приводимые при­меры множеств (множество учащихся, деревьев в саду и т.п.), в большинстве своем, есть конечные множества, а почти все геометрические места точек, рассматривае­мые в школьном курсе геометрии, являются бесконечны­ми точечными множествами.

3. Понятие геометрического места точек, обладаю­щих некоторым свойством, вводим на примере геометрического места точек, равноудаленных от двух данных точек. После изучения признаков равенства прямоуголь­ных треугольников решаем задачу: «Найти точку, рав­ноудаленную от двух данных точек А и В» (рис. 27).

Рис. 27

У чащиеся обычно указывают лишь точку О, середину отрезка АВ. А нет ли на плоскости еще точек, равноуда­ленных от А и В? При построе­нии с помощью циркуля не- скольких таких точек учащиеся самостоятельно припоминают свойство точек оси симметрии и говорят, что точек, равноудаленных от А и В, будет много, все они лежат на оси симмет­рии данных точек А и В.

Можно непосредственно, основываясь на признаках ра­венства прямоугольных тре­угольников, доказать, что всякая точка, равноудаленная от данных точек А и В, лежит на их оси симметрии, то есть на перпендикуляре, проведенном к отрезку АВ через его середину, и наоборот, всякая точка этого перпендику­ляра равноудалена от точек А и В.

После этого даем определение геометрического места точек, обладающих некоторым свойством, как множест­ва всех точек, обладающих этим свойством, и только та­ких точек, и предлагаем учащимся сформулировать ре­зультат решения задачи и записать в тетради, что гео­метрическое место точек, равноудаленных от двух точек, есть ось симметрии данных точек.

Здесь впервые встречаемся не с отдельной, фиксиро­ванной точкой, а с любой точкой прямой. До этого уча­щиеся почти всегда имели дело с неподвижными, опре­деленными по положению точками, а здесь точка может перемещаться некоторым образом, но все время она об­ладает определенным свойством. Поэтому большую пользу окажет учащимся наглядное пособие с непо­движными точками А и В и перемещающейся по их оси симметрии точкой О, соединенной резинкой с точками А и В, с помощью которого хорошо разъяснить смысл выражения: «Любая точка оси симметрии равноудалена от А и В ».

Примечание. Включение в определение лишних с научной точки зрения слов «и только таких точек» вызвано педагогическими соображениями. В противном случае в определении явно не выделяется необходимость доказательства двух взаимно обратных теорем для утверждения, что та или иная фигура является геометрическим местом точек, обладающих определенным свойством.

4. Целесообразно в качестве домашнего задания к этому уроку предложить учащимся повторить определе­ние окружности (§ 12 по учебнику Н. Н. Никитина). То­гда на уроке, уточнив, что все точки окружности нахо­дятся от центра на одном и том же расстоянии, а всякая точка, взятая внутри (вне) окружности, находится от ее центра на расстоянии, меньшем (большем) радиуса, делаем вывод, что окружность можно рассматривать как геометрическое место точек плоскости, находящихся на данном расстоянии R от данной точки О.

Предлагаем учащимся самостоятельно найти все точки, находящиеся от данной точки О на расстоянии, меньшем чем R. И при разборе этого задания подчерки­ваем, что геометрическим местом точек может быть пря­мая, окружность и даже круг, а в дальнейшем будет показано, что геометрическим местом точек, обладаю­щих некоторым свойством, может быть луч, отрезок прямой, две прямые или две окружности и даже отдельные точки. Разбирая такие конкретные примеры, мы пока­зываем учащимся разнообразие видов тех множеств то­чек, которые могут быть геометрическими местами точек.

Затем надо показать учащимся, что одно и то же гео­метрическое место точек может встречаться в различ­ных формулировках, для чего сравниваем, например, из­вестное им геометрическое место точек, равноудаленных от двух данных точек, с такими, как геометрическое место точек, равноудаленных от концов дачного отрезка; геометрическое место вершин равнобедренных треуголь­ников с общим основанием (середина основания уже исключается).

5. Применяя эти геометрические места точек, решаем задачи методом геометрических мест, начиная с простей­шей задачи. Какие же задачи считать простейшими?

Сущность метода геометрических мест состоит в сле­дующем:

1) Решение задачи сводим к отысканию точки, удо­влетворяющей определенным условиям.

2) Отбрасываем одно из этих условий, получим гео­метрическое место точек, удовлетворяющих оставшимся условиям.

3) Отбрасываем затем какое-нибудь другое условие, получим новое геометрическое место точек, удовлетворяющих остальным условиям.

4) Искомая точка, удовлетворяющая всем условиям, является точкой пересечения полученных геометрических мест.

Какую задачу ни возьмем, одновременно второй и третий этапы отсутствовать не могут, ибо тогда это не была бы задача на метод геометрических мест. Но без одного из этих этапов можно обойтись, если в условии указать геометрическую фигуру, которой должна при­надлежать искомая точка. Чтобы избежать и первого этапа, достаточно задачу сформулировать в виде: «Най­ти точку...».

Следовательно, простейшими задачами на метод гео­метрических мест будут задачи вида: «На какой-либо фигуре найти точку, удовлетворяющую определенным условиям.

Метод осевой симметрии.

1. Осевая симметрия – это первый из видов движе­ния, преобразования, с которым учащиеся встречаются в систематическом курсе геометрии.

В настоящее время в геометрии большое значение имеют конструктивные навыки, при помощи которых учащиеся овладевают методами преобразования одних геометрических фигур в другие, и постепенно знакомятся с важной идеей геометрического преобразования, кото­рое является аналогом функциональной зависимости в геометрии.

Курсы алгебры и арифметики подчинены одной идее, идее функциональной зависимости. Мы стремимся воспи­тывать у учащихся функциональное мышление, умение находить законы связей между величинами. Подчинив курс геометрии идее геометрических преобразова­ний, аналогу функциональной зависимости, подчиняем все изложение курса математики одной руково­дящей идее.

В новой программе по геометрии значительное внима­ние уделено геометрическим преобразованиям, то есть таким операциям, когда каждой точке одной фигуры по некоторому закону ставится в соответствие определенная точка другой фигуры. В средней школе из геомет­рических преобразований рассматриваются различные виды движений, а также подобие фигур.

Изучение движения в средней школе принесет ощутимые плоды, если эти преобразования станут осно­вой курса геометрии, а не придатком, органически не связанным с ним. Движение должно служить одним из основных методов доказательства многих теорем геомет­рии в VI-VII классах. Более того, идея движения может быть положена в основу построения значительной части курса геометрии. Излагаемый материал приобретает кинематический характер, значительно облегчается по­нимание учащимися образования и построения геомет­рических фигур. Применяя понятие осевой симметрии, можно значительно усовершенствовать школьный курс геометрии. Например, применение свойств оси симметрии позволяет довольно просто изложить три признака ра­венства треугольников, специальные случаи равенства прямоугольных треугольников и ряд других тем из главы «Треугольники».

2. Различные виды движений дают возможность ре­шать практически важные задачи на построение, дока­зательство и задачи вычислительного характера. Поэтому все изложение должно сопровождаться упражнениями, среди которых предпочтение следует отдавать задачам на построение и на доказательство. Нужно решать и за­дачи на вычисление, особенно с практическим содержа­нием, но в большинстве случаев при решении таких за­дач геометрическая сторона вопроса в значительной сте­пени поглощается арифметическими и алгебраическими операциями.

3. Известно, что осознанные знания могут быть полу­чены только в процессе активной и творческой деятель­ности самостоятельно или под руководством учителя. При изучении осевой симметрии имеются большие возможности привлечь учащихся к формированию самого понятия. Действительно, учащиеся неоднократно наблю­дали в жизни примеры симметричных фигур, многие из таких предметов они рисовали или изготовляли на уро­ках в начальной школе и в V классе: вырезали симмет­ричные фигуры из бумаги, рисовали симметричные орнаменты, листья и цветы, изготовляли симметричные предметы из дерева и металла, применяя симметричные инструменты.

Анализируя эти знакомые учащимся примеры, осо­бенно примеры предметов, которые были объектом или орудием трудa учащихся в школьных мастерских, на уроках домоводства или общественно полезного труда, мы постепенно формируем представление о симметрич­ных фигурах.

Часть работ (изготовление мотыги, планки для граб­лей и т. п.), требующих построения точек, симметричных относительно определенной оси, учащиеся изготавливают до изучения соответствующего материала в курсе геометрии. поэтому при объяснении осевой симметрии, чтобы подчеркнуть значение этого понятия, в качестве симметричных фигур использовали пособия, изготовленные учащимися этого же класса в школьных мастерских, причем выбирали всегда два однотипных пособия 9молотки, стамески), одно из которых сделано аккуратно, точно по чертежу, а второе такое, у которого все размеры выдержаны, но нарушена симметричность. Совместными усилиями учащиеся выяснили, почему второе пособие получилось плохим, и как нужно было правильно сделать разметку.

4. В школьном курсе геометрии выражение «симмет­рия» имеет двоякий смысл: оно обозначает и вид движе­ния (преобразование) и свойство плоской фигуры, обла­дающей симметрией, которая при соответствующем дви­жении переходит сама в себя. Это различие мы должны учитывать, ибо в преподавании приходится иметь дело с каждым из этих истолкований симметрии. И одна из задач учителя – добиться того, чтобы учащиеся воспри­няли симметрию как один из способов преобразования одной фигуры в другую, а не как свойство неподвижной фигуры.

Поэтому после введения определения симметричных относительно оси точек, внимание учащихся переклю­чаем на практику построения взаимно симметричных относительно оси фигур, для чего решаем задачи вида:

1) Построить точку, симметричную данной точке от­носительно данной прямой.

2) Построить отрезок (прямую), симметричный дан­ному отрезку (прямой) относительно данной прямой.

3) Построить треугольник, симметричный данному треугольнику относительно данной прямой.

4) Построить окружность, симметричную данной ок­ружности относительно данной прямой.

5) Построить треугольник, симметричный данному прямоугольному треугольнику относительно а) его ка­тета; б) его гипотенузы.

Характеристики

Тип файла
Документ
Размер
27 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее