25401-1 (591007), страница 2

Файл №591007 25401-1 (Влияние использования схем, чертежей, иллюстраций на формирование ЗУН при обучении младших школьников решению задач на движение) 2 страница25401-1 (591007) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Подготовительная работа проводится по обобщению представлений детей о движении.

Вначале рассматриваются простые задачи следующего характера:

¼ часть всего пути ученика от дома до школы составляет 80 м.

Сделай к задаче чертеж и узнай расстояние от дома ученика до школы.

Все расстояние обозначим отрезком.

____________________________________________

80м 80м 80м 80м

Какую часть пути прошел ученик от дома до школы?

Значит, на сколько равных частей мы должны разделить отрезок?

Так как он прошел ¼ часть всего пути, а это 80м – обозначим на отрезке.

Чему же равно расстояние от дома до школы? (320 м)

Как узнали?

Почему умножаем?

Затем ученики решают 2-3 подобных задачи.

При ознакомлении со скоростью необходимо так организовать работу учащихся, чтобы они сами нашли скорость своего движения пешком. Дети проходят расстояние за одну минуту. Учитель же сообщает, что расстояние, которое ученик прошел за 1 минуту называется скоростью. Учащиеся называют свои скорости. Затем учитель называет скорости некоторых видов транспорта.

Пешеход был в пути 3 часа. Он прошел расстояние 12 км. Каждый час он проходил одинаковое расстояние. Сколько км в каждый час проходил пешеход?

Расстояние, пройденное пешеходом, обозначим отрезком. Сколько часов был в пути пешеход?

Что еще сказано о пешеходе?

На сколько равных частей мы должны разделить отрезок?

1 час 1час 1 час

_________________________________________________

12 км

А теперь внимательно посмотрите на чертеж и скажите: сколько км пешеход проходил в каждый час? (4 км) Как узнали? (12:3) Почему делили? (Потому что пешеход был в пути 3 часа и в каждый час проходил одинаковое расстояние). Итак, сколько км проходил пешеход в каждый час? (; км) Число 4 обозначает, что в каждый час пешеход проходил по 4 км. Эта величина называется скоростью.

Скорость показывает, какое расстояние проходит пешеход в каждый час, если он проходит в 1 час одинаковое расстояние.

12 : 3 = 4 км/ч

Ответ: скорость пешехода 4 км/ч

Итак, что же обозначает скорость? Какое расстояние проходит пешеход в каждый час, т.е. какое расстояние проходит предмет за единицу времени.

Затем решается несколько задач на нахождение скорости, если известно расстояние и время.

Например:

Велосипедист был в пути 3 часа и проехал за это время 36 км, в течение каждого часа он проезжал одинаковое расстояние. Сколько км проезжал велосипедист в каждый час?

После того как дети познакомились с понятием скорость, учитель предлагает решить задачу на нахождение скорости.

Велосипедист был в пути 3 ч и проехал расстояние 48 км. С какой скоростью двигался велосипедист, если каждый час проезжал одинаковое расстояние.

Краткую запись будем выполнять в виде таблицы. О каких величинах идет речь в задаче? (скорость, время, расстояние).

V t S

? км/ч 3 ч 48 км

Что сказано о велосипедисте? (Он был в пути 3 ч) В какую графу мы это запишем? (В t ) Известно ли нам расстояние, которое проехал велосипедист? (известно – 48 км) В какой графе запишем? ( S ) А известна ли нам скорость? (Нет) Как обозначим это в таблице? (знаком вопроса «?») Повторите задачу по краткой записи.

Сможем ли мы сразу ответить на вопрос задачи? (Сможем) Каким действием? (Делением) Почему делением? (Чтобы найти скорость, нужно расстояние разделить на время). Запишем решение задачи в тетрадь. Чему же равна скорость? (16 км/ч). Как узнали? (48 : 3 = 16 км/ч). Запишите ответ задачи.

Затем решается еще несколько задач на нахождение скорости. После чего делается вывод. Как же найти скорость, если известно расстояние и время? (Нужно расстояние разделить на время).

Велосипедист двигался со скоростью 16 км/ч. Какое расстояние проехал велосипедист за 3 ч?

О каких величинах идет речь в задаче? (О скорости, времени, расстоянии).

Расстояние обозначим отрезком. Сколько часов был в пути велосипедист? (3 ч) Что еще сказано о велосипедисте? (Что он двигался со скоростью 16 км/ч). Что это значит? (Что каждый час он проезжал 16 км). На сколько равных частей разделим отрезок? (На 3 равные части). Почему ? (Так как был в пути 3 часа).

16 км 16 км 16 км

__________________________________________

? км

А теперь посмотрите на чертеж и скажите: чему же равно расстояние, которое проехал велосипедист за 3 часа? (48 км) Как узнали? (16*3=48). Почему умножили? (Потому что каждый час велосипедист проезжал по 16 км, а ехал 3 ч, т.е. по 16 нужно взять 3 раза). Запишите решение и ответ задачи.

Вывод делается после решения трех задач с использованием чертежа. Как найти расстояние, если известны скорость и время? (Чтобы найти расстояние, нужно скорость умножить на время).

Четвертая задача решается с составлением краткой записи в виде таблицы.

Пешеход был в пути 4ч, двигаясь со скоростью 5 км/ч. Какое расстояние прошел пешеход.

О каких величинах идет речь в задаче? ( V, t, S ) Сколько часов был в пути пешеход? (4ч). В какой графе запишем это? ( t ) Что еще известно в задаче? (Пешеход двигался со скоростью 5 км/ч). В какой графе запишем это? (В V ) А известно ли нам расстояние? (Нет) Как это обозначим в таблице? («?») Можем узнать? (Да) Каким действием? («*»). Почему умножением? (Чтобы найти расстояние, нужно скорость умножить на время).

V t S

5 км/ч 4 ч ? км

Итак, как же найти расстояние, если известны скорость и время? Чтобы найти расстояние, нужно скорость умножить на время. 5*4=20 км . Запишите решение и ответ задачи.

Автомобиль ехал со скоростью 60 км/ч. За сколько часов он проехал расстояние, равное 240 км?

О каких величинах идет речь в задаче? (О скорости, времени, расстоянии). Краткую запись будем составлять в виде таблицы.

V t S

60 км/ч ? 240 км

Что сказано о расстоянии? (Что автомобиль проехал 240 км). Запишем это в таблицу. Что сказано о скорости? (Что автомобиль ехал со скоростью 60 км/ч). Запишите это в таблицу. О чем спрашивается в задаче? (Сколько часов был в пути автомобиль?) Обозначим в таблице.

Что обозначает скорость?

Автомобиль проезжал по 60 км в ч, а всего 240 км. Сколько времени потратил автомобиль на весь путь? Как узнали? Почему?

Запишите решение задачи и ответ. После решения 2-3 задач делается вывод.

А теперь посмотрите на таблицу и скажите: как же найти время, если известно расстояние и скорость. На последующих уроках решаются все три типа задач вперемешку.

1.3. Решение составных задач на встречное движение,

на противоположное движение

Методика обучения решения задач «на встречное движение» основывается на четких представлениях учащихся о скорости равномерного движения, которые уточняются и обобщаются на специально отведенных этому вопросу уроках. На основе жизненных наблюдений выясняется и иллюстрируется смысл слов «двигаться навстречу друг другу», «в противоположных направлениях», «выехали одновременно из двух пунктов и встретились через…» и т.п.

После наглядной инсценировки каждого из случаев с помощью учащихся целесообразно с постепенным усложнением научить детей изображать схему таких задач «в отрезках». Причем стараться соблюдать отношения их длины в зависимости от скоростей и пройденных (в частности «до встречи») расстояний. Если, например, скорость одного поезда была 60 км в час, а другого – 45 км/ч, то первая стрелка должна быть длиннее второй и т.п. Если в распоряжении учителя имеется диафильм «Задачи на движение», то его можно использовать на этом уроке. Только после такой подготовительной работы последовательно, под руководством учителя рассматривается задача №464 (или ей подобная). Прежде чем разбирать эту задачу на уроке, следует повторить и восстановить в памяти следующие сведения: связь между скоростью, расстоянием и временем (как одна из трех величин выражается через две другие?), ситуацию, при которой «два пешехода одновременно вышли навстречу…» Затем учащийся под руководством учителя и при его участии вчитывается в задачу №464 (1).

Два пешехода вышли одновременно навстречу друг другу из двух сел и встретились через 3 часа. Первый пешеход шел со скоростью 4 км/ч, второй – 5км/ч. Найди расстояние между селами.

По схеме, дублированной на доске, вызываемые учащиеся рассказывают содержание задачи. При этом выясняется: откуда начал движение каждый пешеход? С какой скоростью двигался каждый? Почему их место встречи на схеме обозначено ближе к месту выхода одного из пешеходов? Кого из них? Можно спросить при этом: «В каком случае флажок окажется точно на полпути? Что означает деление слева от флажка, справа от флажка? Почему они различны по длине? Что означают числа под стрелками?

Такое подробное рассмотрение учит детей «читать» схему. Затем учитель может спросить у класса: «Как решить задачу?»

Возможно, один из учеников приведет примерно такое рассуждение: «Один пешеход до встречи прошел 4*3=12 (км), а другой – 5*3=15 (км). Расстояние между селами будет 12+15=27 (км).

Если такого ученика не нашлось и предложения детей неполны или неверны, то учитель проводит, пользуясь наводящими вопросами, эту работу с классом, постепенно подводя его к составлению по задаче выражения:

4*3 + 5*3 (км)

Найдя значение этого выражения, получим ответ: расстояние между селами равно 27 км.

В связи с нашей задачей учитель должен провести специальную работу, на основе которой будет выявлен смысл понятия «скорость сближения».

Для этого по схеме выясняется, что за каждый час пешеходы сближаются на (4+5) км в час. «На сколько километров сблизятся пешеходы за 3ч?» Это дает нам второй путь решения задачи: (4+5)*3.

Затем, пользуясь схемами, подробно рассматривают задачу №464 (3).

Из двух сел, находящихся на расстоянии 27 км, вышли одновременно навстречу друг другу два пешехода и встретились через 3ч. Первый пешеход шел со скоростью 4 км/ч. С какой скоростью шел второй пешеход?

Задачу №464(3), как более сложную и опирающуюся на понятие «скорость сближения», можно рассмотреть в заключение урока, когда дети уже приобретут некоторый опыт решения подобных задач.

При рассмотрении задачи №464(3) можно пойти по пути составления уравнения. Если обозначить скорость второго пешехода буквой х, расстояние, которое пройдет первый пешеход до встречи, будет (4*3) км. Общее расстояние, пройденное пешеходами до встречи, будет (4*3 + 3*х) км, и оно равно 27 км. Получаем уравнение: 4*3 + 3*х=27

Эту же задачу можно решить по действиям:

4*3= 12 (км) прошел до встречи первый пешеход;

27-12=15 (км) прошел до встречи второй пешеход;

15:3=5 (км/ч) скорость, с которой шел второй пешеход, и только теперь целесообразно составить выражение к этой задаче:

(27- 4*3) : 3

В дальнейшем при решении подобных задач можно использовать как запись отдельных действий, так и составление уравнения или выражения.

На следующих уроках продолжается работа по формированию и совершенствованию навыков решения задач «на встречное движение».

Эти задачи получают некоторое развитие для случая, когда предметы начинают движение из одной точки и в противоположных направлениях (№541, 544 и т.д.). Перед решением таких задач следует проиллюстрировать на схеме и в инсценировке, что «встречное движение» – тоже движение в «противоположных направлениях», что после встречи, если скорости тел не изменились, они будут «удаляться» друг от друга с той же скоростью, с какой «сближались». Поэтому скорость удаления тоже равна сумме скоростей движущихся тел.

При рассмотрении первой из подобных задач не следует сразу опираться на «скорость удаления», а решить ее различными способами аналогично тому, как рассматривалась задача №464.

В результате решения соответствующих простых задач ученики должны усвоить такие связи: если известны расстояния и время движения, то можно найти скорость действием деления; если известна скорость и время движения, можно узнать расстояние действием умножения; если известны расстояние и скорость, можно найти время движения действием деления.

Далее, опираясь на эти знания, дети будут решать составные задачи, в том числе задачи на нахождение четвертого пропорционального, на пропорциональное деление, на нахождение неизвестного по двум разностям с величинами S, t, V.

При работе с этими задачами надо чаще использовать иллюстрации в виде чертежа, так как чертеж помогает правильно использовать, определять и представлять жизненную ситуацию, отраженную в задаче.

Задачи на пропорциональное деление вводятся по-разному: можно предложить для решения готовую задачу, а можно сначала составить ее, преобразовать задачу на нахождение четвертого пропорционального, в задачу на пропорциональное деление, и после их решения сравнить как сами задачи, так и их решения.

Обобщению умения решать задачи рассмотренного вида помогают упражнения творческого характера.

До решения полезно спросить, на какой из вопросов задачи получается в ответе большее число и почему, а после решения проверить, соответствуют ли этому виду полученные числа, что является одним из способов проверки решения. Можно далее выяснить, могли ли получиться в ответе одинаковые числа и при каких условиях.

Полезны упражнения на составление задач учащимися с последующим их решением, а также упражнения по преобразованию задач. Это прежде всего составление задач аналогичных решению. Или составление и решение задач по их краткой схематической записи. Например.

Скорость

Время

Расстояние

Одинаковая

?

?

Ученики называю величины, подбирают и называют соответствующие числовые данные, формируют вопрос и решают составленную задачу.

Среди составленных задач особое внимание должно быть уделено задачам на встречное движение. Так же в 3 классе вводятся задачи на противоположное движение. Каждая из этих задач имеет 3 вида в зависимости от данных и искомого.

I вид – даны скорость каждого из тел и время движения, искомое –расстояние;

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6540
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее