90531 (590018), страница 10
Текст из файла (страница 10)
При сравнении частот аллелей и распределений генотипов ассоциацию с вторичным туберкулезом продемонстрировали полиморфизм 274С/Т гена NRAMP1, полиморфный маркер гена IL1В, VNTR полиморфизм гена IL1RN, а также ген IL12B (табл. 15). Аллель 274Т гена NRAMP1 чаще встречался в группе больных (р=0,005), причем у лиц гетерозиготных по этому полиморфизму риск заболеть туберкулезом возрастал в 1,75 раза (95%СI:1,06–2,88; p=0,026), а у гомозигот 274Т/Т шанс заболеть был в пять раз выше, чем у обладателей других генотипов этого полиморфизма (95%CI:1,07–33,72; p=0,037).
Показано, что генотип 274С/С статистически значимо чаще встречался у здоровых лиц (OR=0,51, 95%CI:0,31–0,82; p=0,005). В целом, сравнивая результаты, полученные при исследовании частот аллелей и генотипов у больных первичным и вторичным туберкулезом, можно отметить, что разные полиморфизмы гена NRAMP1 оказывают неравнозначное влияние на предрасположенность к туберкулезу у русских г. Томска.
Таблица 15 Статистические показатели для сравнения частот аллелей и генотипов у больных вторичным туберкулезом легких и здоровых
| Полимор-физм | Гено-тип | N | р | OR (95% СI) | Частота аллеля | р |
| NRAMP1 | ||||||
| 274С/Т | CC CT TT | 136 108 13 | 0,010 | 0,51* (0,31–0,82) 1,75* (1,06–2,88) 5,01* (1,07–33,72) | C=0,739 | 0,005 |
| IL1B | ||||||
| +3953 А1/А2 | A1A1 A1A2 A2A2 | 146 92 21 | 0,103 | 0,70 (0,45–1,10) 1,19 (0,75–1,89) 2,36 (0,82–7,34) | A1=0,741 | 0,041 |
| IL1RN | ||||||
| VNTR | A1A1 A1A2 A2A2 другие | 134 89 23 12 | 0,025 | 0,55* (0,35–0,86) 2,20* (1,31–3,72) 1,04 (0,48–2,31) - | А1=0,705 A2=0,269 A3=0,023 A4=0,003 | 0,019 |
Примечание. р - достигнутый уровень значимости; OR – величина отношения шансов; (95%CI) - доверительный интервал для OR; N – количество индивидов с определенным генотипом; *- p < 0,05
Показано, что полиморфизм 1465-85 G/A гена NRAMP1 проявил связь с первичным туберкулезом. Учитывая, что при аналогичном сравнении частот генотипов и аллелей в выборках больных вторичными формами туберкулеза и здоровых, различий не было найдено, полученные данные позволяют предположить наличие влияния этого полиморфизма на более раннее возникновение заболевания. Полиморфный вариант 274С/Т оказался ассоциированным с вторичным генезом заболевания. Для маркеров D543N и 469+14G/C гена NRAMP1 не показано предрасполагающего влияния на ТБ у русских жителей г. Томска.
Известно, что IL–1β является провоспалительным цитокином, а значит, его варианты могут приводить к ослаблению защитной реакции организма и, как следствие, способствовать заболеванию при наличии возбудителя в организме. Выявлены различия частот аллелей при сравнении группы контроля и больных вторичным туберкулезом, при которых заболевание ассоциированно с аллелем А2 IL1В (χ2=4,17, р=0,041). Продукт гена IL1RN является рецепторным антагонистом IL–1β, выполняя функцию специфического блокатора биологического действия IL–1β. Показано, что аллель А2 приводит к увеличению продукции белка IL–1RN [Wilkinson R. J. et al., 1999].
Выявлено статистически значимое увеличение частоты аллеля А2 VNTR полиморфизма гена IL1RN у больных по сравнению с контролем (χ2=9,92, р=0,019). Распределение генотипов этого полиморфизма также различалось в группах лиц с вторичным туберкулезом и здоровых (χ2=14,49, р=0,025): у больных чаще регистрировался гетерозиготный генотип А1/А2, риск развития заболевания у них был выше более чем в 2 раза, по сравнению с лицами с другими генотипами этого полиморфизма (95%CI: 1,31–3,72, р=0,002). Протективная роль в развитии вторичного туберкулеза показана для генотипа А1/А1, так как он статистически значимо чаще встречен у здоровых (OR=0,55, 95%CI: 0,35–0,86, р=0,007).
В целом, сравнение общей группы больных туберкулезом, выборки пациентов–бактериовыделителей, больных вторичным ТБ с контрольной выборкой показало аналогичные результаты, то есть связь полиморфизмов 274С/Т гена NRAMP1, +3953 А1/А2 гена IL1B и VNTR гена IL1RN с заболеванием. Общую выборку больных на 86% составили пациенты с вторичным туберкулезом. При первичном туберкулезе, как правило, не встречается выделение МБТ с мокротой [Рабухин А.Е., 1976]. В исследовании жителей г. Томска только один больной с первичным туберкулезным комплексом был бактериовыделителем. Так, выборка больных туберкулезом МБТ+ практически на 100% состояла из пациентов с туберкулезом вторичного периода. Таким образом, полиморфизм 274С/Т гена NRAMP1, +3953 А1/А2 полиморфизм гена IL1B и VNTR полиморфизм IL1RN проявили ассоциацию с вторичным туберкулезом. Тем более, что ассоциации, найденные при сравнении первичного туберкулеза с контролем, затрагивали иные гены.
Найдена связь полиморфизма 1188А/С гена IL12B как с первичным, так и с вторичным туберкулезом, причем генотип 1188С/С чаще встречался у больных, чем у здоровых (табл. 16). Это наблюдение вполне объяснимо, поскольку известно, что IL-12 участвует в активации макрофагов посредством Т-хелперов, вырабатывающих INF-γ, а активизированные макрофаги, в свою очередь, устремляются к месту нахождения микобактерий и активно их поглощают. Вероятно, варианты гена IL12B влияют на подверженность заболеванию у неинфицированных МБТ и инфицированных ранее людей.
Кроме анализа связи генетических маркеров с заболеванием по типу случай–контроль был использован метод оценки ассоциации болезни с генетическими маркерами на семейном материале с помощью Transmission Disequilibrium Test (TDT). Метод оценивает предпочтительность переноса аллеля М1 больному потомку от М1М2 гетерозиготных родителей.
Если аллель М1 переносится существенно больше, чем в половину раз, можно заключить, что маркерный локус сцеплен с локусом предрасположенности к заболеванию, и что аллель М1 положительно ассоциирован с аллелем, который увеличивает восприимчивость к заболеванию, или является таковым [Spielman R.S. et. al., 1993].
Таблица 16 Статистические показатели для сравнения частот аллелей и генотипов полиморфизма 1188А/С гена IL12B у больных различным по генезу туберкулезом и здоровых
| Выборка больных ТБ | Генотипы 1188А/С | Сравнение | OR(95%CI) | p | |||||
| генотипов | аллелей | ||||||||
| ТБ первичного периода | АА | 27 | р=0,012 | р=0,370 | 0,93(0,42–2,06) | 0,997 | |||
| АС | 11 | 0,71(0,30–1,64) | 0,500 | ||||||
| СС | 4 | 13,47(1,35–326,42) | 0,013 | ||||||
| ТБ вторичного периода | АА | 135 | р=0,041 | р=0,041 | 0,69(0,43–1,10) | 0,120 | |||
| АС | 89 | 1,20(0,75–1,94) | 0,491 | ||||||
| СС | 13 | 7,43(1,00–153,87) | 0,023 | ||||||
Примечание. Обозначения см. табл. 12
Расчет TDT провели для всех исследованных полиморфных маркеров, за исключением D543N гена NRAMP1, для которого TDT не был рссчитан из-за низкой гетерозиготности родителей пробандов (табл. 17). Анализ показал наличие связи полиморфизма 1188А/С гена IL12B с туберкулезом. Дети, больные туберкулезом, лишь в 13% случаев наследовали от родителей аллель 1188А, тогда как аллель 1188С – в 87%.
Таблица 17 Число аллелей, унаследованных больными потомками от гетерозиготных родителей
| Ген | Полиморфизм | Аллели | Количество перенесенных аллелей | TDT | p (d.f.=1) |
| NRAMP1 | 469+14G/C | G | 10 | 1,00 | 0,317 |
| С | 6 | ||||
| 1465-85G/A | G | 12 | 0,15 | 0,695 | |
| A | 14 | ||||
| 274C/T | C | 9 | 0,06 | 0,808 | |
| T | 8 | ||||
| IL12B | 1188A/C | A | 2 | 8,07 | 0,005 |
| C | 13 | ||||
| VDR | B/b | B | 6 | 2,00 | 0,157 |
| b | 12 | ||||
| F/f | F | 11 | 0,00 | 1,000 | |
| f | 11 | ||||
| IL1B | +3953A1/A2 | A1 | 9 | 0,05 | 0,818 |
| A2 | 10 | ||||
| IL1RN | VNTR | A1 | 9 | 0,60 | 0,439 |
| не А1* | 6 |
Примечание. р – достигнутый уровень значимости; d.f. – число степеней свободы; * - аллели А2 и А3
Найденная связь изменчивости гена IL12B закономерна, поскольку продукт экспрессии этого гена – IL–12 является ключевым цитокином для усиления клеточно-опосредованного иммунного ответа и инициации эффективной противоинфекционной защиты. Он секретируется макрофагами в ответ на индукцию микробными компонентами и продуктами, активирует дифференцировку Т-лимфоцитов, повышает их цитотоксическую активность, усиливает пролиферацию естественных киллеров, Т-лимфоцитов и продукцию других цитокинов. Главный эффект – индукция синтеза INF-γ. Характер течения и исход многих инфекций зависят от способности возбудителя индуцировать синтез IL-12 [Тотолян А.А., Фрейдлин И.С., 2000]. Таким образом, у русских жителей г. Томска установлена ассоциация полиморфизма 1188А/С гена IL12B с заболеванием: индивиды-носители аллеля 1188С в большей степени подвержены туберкулезу, как первичному, так и вторичному. Важным обстоятельством с точки зрения достоверности является тот факт, что показанная связь маркера с заболеванием выявлена как методом случай – контороль, так и TDT на семейном материале.
3.3 Анализ накопления случаев туберкулеза в семьях больных
В практической деятельности фтизиатры выделяют такое понятие, как семейный контакт по туберкулезу. Оно подразумевает наличие тесного семейного общения родственников и неродственных индивидов с больным туберкулезом. Также выделяют смежное понятие - семейный туберкулез. О таком туберкулезе говорят, когда больны родственники пациента. При сравнении частоты встречаемости родственников, больных туберкулезом, у заболевших этой инфекцией и у здоровых индивидов, были выявлены отличия (χ2=15,67, р<0,001) (табл. 18). Показано, что вероятность заболеть туберкулезом выше у индивидов, в семьях которых имеются лица, перенесшие это заболевание (OR=3,63, 95%CI:1,84–7,31; р<0,000). У больных частота туберкулеза среди родственников первой степени родства в 3,63 раза выше по сравнению с родственниками первой степени родства здоровых индивидов.
Таблица 18 Частота заболевания туберкулезом родственников больных данным инфекционным заболеванием и здоровых индивидов
| Выборка | Нет тубер-кулеза в роду | Имеют родственников с туберкулезом | Кол-во родствен-ников 1 степени родства с туб-зом | Кол-во родствен-ников 2 степени родства с туб-зом | ||
| Из них 1 степени родства | Из них 2 степени родства | Из них 1 и 2 степени родства | ||||
| Здоровые n=97 | 84 (86,6%) | 1 (1%) | 11 (11,4%) | 1 (1%) | 2 | 14 |
| Больные туберкулезом n=225 | 144 (64%) | 59 (26,2%) | 12 (5,3%) | 10 (4,5%) | 93 | 25 |
Примечание. n – численность группы
Необходимо отметить, что учитывались родственники I и II степени родства, перенесшие туберкулез, но не имеющие тесного семейного контакта в период болезни с обследуемыми индивидами. Таким образом, в данном случае туберкулезный контакт, как причину накопления случаев заболевания у родственников индивидов больных ТБ, можно исключить.
К тому же исследование распространенности туберкулеза среди супругов пробандов, не состоящих в кровном родстве с больными туберкулезом, но находившихся с ними в семейном контакте, проведенное В.П. Чукановой с соавт. (1995), показало, что частота туберкулеза легких в этой группе не отличалась от частоты заболевания среди населения обследованной этнической группы. Кроме того, было установлено, что в семьях пробандов, которые болели деструктивными формами инфекции, частота туберкулеза среди родственников первой степени родства превышала в пять раз частоту заболевания среди населения при отсутствии семейного контакта [Чуканова В.П. и др., 1995]. В аналогичном исследовании, проведенном ранее, получены сходные результаты: в роду здоровых туберкулез встречался в пять раз реже, чем у больных [Березовский Б.А. и др., 1986]. Можно заметить, что в исследовании жителей г. Томска увеличение заболеваемости среди родственников больных несколько ниже. Возможно, это обусловлено социальными, демографическими, или другими причинами. Повышение частоты туберкулеза у родственников больных по сравнению со здоровыми, свидетельствует в пользу имеющегося мнения о наследственной предрасположенности к инфекционным заболеваниям, в том числе к туберкулезу.
При дальнейшем анализе выборку больных разделили на две группы: первую группу составили пациенты, родственники которых болели туберкулезом, вторую – те, среди родственников которых не было заболевших этой инфекцией. Учитывались родственники I и II степени родства. При сравнении частот аллелей у больных первой и второй группы установлено, что в выборке больных семейным туберкулезом статистически значимо чаще встречался аллель 543N гена NRAMP1 (χ2=6,08, р=0,014).
Полиморфизм D543N гена NRAMP1 является наиболее исследованным в различных популяциях мира из всех аллельных вариантов этого гена. Показана его значимость в подверженности к туберкулезу у японцев и китайцев [Gao P. S. et al., 2000; Liu W. et al., 2004]. Однако у русских г. Томска не найдено ассоциаций этого полиморфизма с заболеванием. Вероятно, полученное накопление аллеля 543N гена NRAMP1 в группе больных, чьи родственники заболели ТБ, по сравнению с больными, у которых здоровые родственники, можно объяснить неравновесием по сцеплению с другим полиморфизмом этого гена, значимым для туберкулеза.
3.4 Анализ связи полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN с патогенетически важными параметрами болезни
Учитывая поставленные задачи, поиск ассициаций исследуемых полиморфизмов с патогенетически важными параметрами болезни проведен в два этапа: во-первых, анализировали качественные, патогенетически значимые признаки туберкулеза, во-вторых, проведен анализ связи генов с количественными показателями болезни.
3.4.1 Анализ ассоциаций исследованных генов с качественными признаками туберкулеза
Патоморфологические изменения в органах и тканях при туберкулезе многообразны, обусловлены биологическими закономерностями воспалительной реакции, а также особенностями возбудителя болезни, зависят от формы, стадии, локализации и распространенности патологического процесса. Туберкулез относят к хроническим гранулематозным заболеваниям, для которых характерно одинаковое построение гранулем, состоящих из эпителиоидных клеток, гигантских клеток Пирогова-Лангханса и лимфоцитов [Струков А.И., Кауфман О.Я., 1989]. В основе воспаления лежат фазы экссудации, альтерации и пролиферации, однако они не всегда четко выражены и не всегда сохраняется их последовательность. Туберкулезные бугорки могут быть экссудативными (преимущественно лимфоцитарные), продуктивными (эпителиоидно-гигантоклеточные), некротическими, что зависит от вирулентности МБТ, а также от особенностей иммунной реактивности инфицированного макроорганизма [Пузик В.И. и др., 1973; Ерохин В.В., Земскова З.С., 2003]. Степень выраженности различных фаз воспаления также зависит от характера ткани, в которой развивается патологический процесс. Так, экссудация и альтерация будут более резко выражены в рыхлых тканях, и менее – в плотных [Хоменко А.Г., 1996].
Для оценки влияния вариантов генов NRAMP1, VDR, IL1B, IL12B, IL1RN на изменчивость признаков болезни, определяемых рентгенологическими методами, проведен поиск ассоциаций генетических маркеров с наличием деструкции в легочной ткани при туберкулезе и с объемом поражения легкого. При этом пользовались определенным алгоритмом сравнения (рис. 5).
Рис. 5 Алгоритм сравнения групп больных туберкулезом и здоровых индивидов
Выборка больных вторичными формами туберкулеза легких была разделена на две группы в зависимости от наличия деструкции легочной ткани: первую составили 184 больных с экссудативно-некротическим и пролиферативно-некротическим типом воспалительной реакции (инфильтративный туберкулез в фазе распада, диссеминированный туберкулез в фазе распада, казеозная пневмония, фиброзно-кавернозный туберкулез легких); во вторую отнесены 52 больных туберкулезом с отсутствием некроза ткани легкого (диссеминированный туберкулез легких в фазе инфильтрации, инфильтративный туберкулез без распада, очаговый туберкулез, туберкулома).
При сравнении распределений генотипов и частот аллелей исследуемых полиморфизмов в этих группах выявлены статистически значимые отличия.
Так, частота аллелей и генотипов полиморфизма 469+14G/C гена NRAMP1 в выборке больных с экссудативно-некротическим и пролиферативно-некротическим типом воспалительной реакции отличалась от соответствующих значений, у больных с пролиферативным и экссудативным типом воспалительной реакции: у больных деструктивным туберкулезом легких частота аллеля 469+14C была выше (табл. 19).
Таблица 19 Частота аллелей и генотипов полиморфизма 469+14G/C гена NRAMP1 у больных туберкулезом с различным типом воспалительной реакции ткани легкого
| Группы больных туберкулезом | Гено-типы | N | Сравнение генотипов р | Аллели | Сравнение аллелей р |
| Больные туберкулезом с деструкцией легочной ткани | GG GC CC | 108 60 5 | 0,048 | G=0,798 | 0,027 |
| Больные туберкулезом без деструкции легочной ткани | GG GC CC | 39 8 1 | G=0,896 |
Примечание. N – численность генотипов; р – достигнутый уровень значимости
Ассоциация 469+14G/C полиморфизма NRAMP1 гена, возможно, обусловлена функциональной значимостью белкового продукта гена. Белок, NRAMP1 участвует в процессе фагоцитоза и таким образом обеспечивает защиту организма от внутриклеточных микробных агентов. Вероятно, 469+14C аллель снижает функциональную активность NRAMP1, влияя на течение возникшего заболевания и обусловливая развитие деструктивных процессов при вторичном туберкулезе легких. Показано, что у японцев формирование деструкции при туберкулезе также связано с изменчивостью гена NRAMP1, ассоциацию проявил полиморфизм D543N [Abe T. et al., 2003].
При сравнении больных туберкулезом с деструкцией и без таковой со здоровыми, выявлены ассоциации аллеля 274T гена NRAMP1, +3953А2 гена IL1B, 1188С гена IL12B и аллеля А2 VNTR полиморфизма гена IL1RN с распадом ткани легкого (табл. 20). Полиморфные варианты IL1B и IL1RN регулируют эффект IL-1β и таким образом участвуют в моделировании иммунного ответа [Tarlow J.K. et al., 1993]. Обнаружено, что макрофаги больных туберкулезом отличает пониженная способность секретировать ИЛ-1β [Селедцова Г.В. и др., 1991]. Причем при деструктивном процессе наблюдалось более выраженное снижение продукции ИЛ-1, чем при отсутствии некроза легочной ткани [Хонина Н.А. и др., 2000].
Показано, что экспрессия мРНК IL-1β, индуцированная МБТ выше у субьектов IL1В(+3953)А1+ и ниже – у индивидов с IL1В(+3953)А1- гаплотипом. Также известно, что А2 аллель IL1RN приводит к повышению продукции мРНК и секреции белка IL-1RN [Wilkinson R.J. et al., 1999].
Учитывая близкое расположение IL1B и IL1RN на хромосоме 2, предположили, что гены, кодирующие эти белки, наследуются не независимо друг от друга, то есть между локусами имеется неравновесие по сцеплению. С целью подтверждения или опровержения данной гипотезы, между IL1B и IL1RN в выборке больных деструктивным туберкулезом были произведены расчеты неравновесия по сцеплению.
Таблица 20 Статистические показатели для сравнения частот генотипов и аллелей в группах больных туберкулезом с деструкцией и без деструкции ткани легкого со здоровыми индивидами
| Поли-морфизм | Наличие деструкции | Гено-тип | N | Частота аллеля у больных | Сравнение со здоровыми | |
| генотипов | аллелей | |||||
| NRAMP1 | ||||||
| 274C/T | + | CC CT TT | 96 74 11 | С=0,735 | р=0,013 | р=0,005 |
| - | CC CT TT | 29 17 1 | С=0,798 | р=0,671 | р=0,506 | |
| IL1B | ||||||
| +3953 A1/А2 | + | A1A1 A1A2 A2A2 | 100 63 21 | А1=0,715 | р=0,022 | р=0,008 |
| _ | A1A1 A1A2 A2A2 | 26 20 1 | А1=0,766 | р=0,378 | р=0,497 | |
| IL12B | ||||||
| 1188A/С | + | AA AC CC | 94 67 12 | А=0,737 | р=0,012 | р=0,013 |
| _ | AA AC CC | 31 15 1 | А=0,819 | р=0,750 | р=0,986 | |
| IL1RN | ||||||
| VNTR | + | A1A1 A1A2 A2A2 другие | 93 60 20 9 | А1=0,690 А2=0,283 А3=0,030 | р=0,056 | р=0,017 |
| _ | A1A1 A1A2 A2A2 другие | 29 18 2 2 | А1=0,765 А2=0,216 А3=0,020 | р=0,262 | р=0,684 | |
Примечание. Обозначения см. табл. 19
Показано наличие неравновесия по сцеплению между генами, причем +3953А1 аллель IL1B и А1 аллельVNTR полиморфизма IL1RN оказались в фазе отталкивания, мера неравновесия для них составила –0,033 (р=0,009). Известно, что неравновесие по сцеплению возникает между неаллельными генами, расположенными на одной хромосоме столь близко, что частота кроссинговера приближается к нулю. Также гаметическое неравновесие может наблюдаться между генами, локализованными на разных хромосомах, что является результатом действия факторов популяционной динамики, например, естественного отбора [Животовский Л.А., 1984].
При сравнении частоты гаплотипа IL1RN*A1A1/IL1B*A1A1 в группах больных туберкулезом и здоровых индивидов найдено, что статистически чаще это сочетание встречается в контрольной выборке (χ2=9,10, р=0,003). Причем риск заболеть туберкулезом у носителей этого гаплотипа равен 0,50 (0,31–0,79). Таким образом, у русских жителей г. Томска гаплотип IL1RN*A1A1/IL1B*A1A1 имеет протективный эффект в отношении заболевания туберкулезом.
Для оценки тяжести туберкулезного процесса определяют распространенность патологического образования в пораженном органе. Выборку больных вторичным туберкулезом легких разделили на три группы в зависимости от объема поражения. Первую группу составили 68 больных с ограниченным по протяженности туберкулезным процессом (1-2 сегмента). Во вторую группу вошли 37 пациентов, у которых туберкулез локализовался в пределах одной доли. Третью группу составили 115 больных с распространенной формой заболевания (объем поражения – больше доли).
При сравнении этих групп найдены ассоциации генетических маркеров с распространенностью специфического процесса при туберкулезе (табл. 21). В группе больных ТБ с объемом поражения ткани легкого более доли статистически значимо чаще, чем в выборке пациентов с туберкулезом с поражением легкого менее доли, регистрировали индивидов, обладающих гомозиготным по аллелею 469+14С гена NRAMP1 и гетерозиготным генотипом (р=0,043). Таким образом, можно говорить о вкладе 469+14С аллеля гена NRAMP1 не только в формирование деструкции при туберкулезе, но и в увеличение зоны поражения. Хотя полиморфизм 469+14G/С гена NRAMP1 не проявил связь с туберкулезом, его "мутантный" аллель негативно влиял на течение возникшего заболевания, обусловливая распад ткани легкого и увеличивая объем поражения. Противоположным действием на течение туберкулезного процесса обладал полиморфизм B/b гена VDR. Аллель b этого маркера ассоциирован с ограниченным по распространенности вторичным туберкулезом (р=0,021).
Кроме того, с объемом поражения ткани легкого при вторичном туберкулезе проявили ассоциацию полиморфизмы +3953А1/А2 IL1B, 1188А/С IL12B и полиморфизм VNTR IL1RN. Различалась частота генотипов и аллелей в группе контроля и в группах больных туберкулезом разным по площади поражения ткани легкого (табл. 22).
Таблица 21 Частота аллелей и генотипов в группах больных туберкулезом с разным объемом поражения легочной ткани
| Полиморфизм | Генотипы | N (%) | Объем поражения легкого* | Более доли | Доля | Менее доли | |
| NRAMP1 | |||||||
| 469+14 G/C | GG GC CC | 60 (56,6) 41 (38,7) 5 (4,7) | Более доли | - | р=0,016 | ||
| GG GC CC | 26 (70,3) 11 (29,7) 0 (0) | Доля | р=0,043 | - | р=0,875 | ||
| GG GC CC | 47 (72,3) 17 (26,2) 1 (1,5) | Менее доли | р=0,707 | - | |||
| VDR | |||||||
| B/b | BB Bb bb | 22 (20) 63 (57,3) 25 (22,7) | Более доли | - | р=0,895 | р=0,021 | |
| BB Bb bb | 7 (18,9) 22 (59,5) 8 (21,6) | Доля | р=0,973 | - | |||
| BB Bb bb | 3 (4,4) 44 (64,7) 21 (30,9) | Менее доли | р=0,011 | - | |||
Примечание. Обозначения см. табл. 19; * - над диагональю показан уровень р для сравнения частот аллелей, под диагональю - уровень р для сравнения частот генотипов
Таблица 22 Частоты генотипов и аллелей в выборках больных туберкулезом с разным объемом поражения ткани легкого в сравнении с контрольной группой
| Ген | Поли-морфизм | Объем поражения легкого | Частота у больных | Сравнение со здоровыми | |||
| генотипы | N | аллели | генотипы | аллели | |||
| NRAMP1 | 274C/T | Более доли | CC CT TT | 54 51 8 | С=0,704 | р=0,002 | р=0,001 |
| IL1B | +3953 A1/А2 | Менее доли | A1A1 A1A2 A2A2 | 35 25 8 | А1=0,699 | р=0,038 | р=0,015 |
| IL12B | 1188 A/С | Более доли | AA AC CC | 61 37 8 | А=0,750 | р=0,022 | р=0,058 |
| IL1RN | VNTR | Более доли | A1A1 A1A2 A2A2 другие | 59 37 13 6 | А1=0,687 А2=0,287 А3=0,026 | р=0,057 | р=0,018 |
Примечание. Обозначения см. табл. 19
Найденная связь 274С/Т гена NRAMP1 представляется закономерной, поскольку этот полиморфизм также показал ассоциацию с деструктивным туберкулезом, а процессы некроза ткани и распространения воспаления взаимосвязаны. Обнаружена ассоциация генотипа 1188С/С IL12B с распространенным туберкулезным процессом. К тому же, учитывая результаты, полученные при сравнении общей группы больных туберкулезом и здоровых, а также данные анализа семейной выборки, можно суммировать, что у индивидов - обладателей генотипа 1188С/С IL12B предрасположенность к туберкулезу выше, чем у обладателей генотипов 1188А/А и 1188А/С, причем носители генотипа 1188С/С в большей степени рискуют заболеть тяжелым распространенным туберкулезом с деструкцией легочной ткани.
Несмотря на то, что биологические эффекты IL-1β и IL-1RN разнонаправленные, показано, что аллель +3953 А2 IL1В и аллель А2 VNTR полиморфизма IL1RN предрасполагают к возникновению распада легочной ткани при туберкулезе. Однако, что касается распространенности туберкулезного поражения, то аллель +3953 А2 IL1В ассоциирован с небольшой (1-2 сегмента) зоной воспаления, а аллель А2 VNTR полиморфизма IL1RN, напротив, с распространенным процессом.
Таким образом, полиморфизмы 469+14G/C гена NRAMP1 и B/b гена VDR оказывают влияние на течение возникшего заболевания. Изменчивость 274С/Т гена NRAMP1, 1188А/С IL12B, +3953А1/А2 IL1B и VNTR IL1RN предрасполагают к возникновению ТБ, причем все перечисленные маркеры кроме изученного полиморфизма гена IL1B способствуют заболеванию распространенным деструктивным туберкулезом. Полиморфизм +3953А1/А2 гена IL1B обусловливает подверженность к ограниченному туберкулезу с деструкцией ткани легкого у русских г. Томска.
При изучении ассоциаций с патогенетически важными для ТБ качественными признаками у тувинцев выявлена связь генетических маркеров с деструктивным процессом в легком.
Ассоциированными с распадом ткани легкого при туберкулезе оказались полиморфизм B/b гена VDR и полиморфизм VNTR гена IL1RN [Рудко А.А., 2004]. При сравнении найденных у тувинцев и русских ассоциаций можно отметить, что в обеих группах показана связь полиморфизма VNTR (аллеля А2) гена IL1RN с деструкцией при туберкулезе.
Наряду со сходством показаны и отличия. У русских г. Томска этот полиморфизм оказывал влияние на уровне предрасположенности к ТБ, тогда как у тувинцев обусловливал различное клиническое проявление возникшего заболевания. Как у русских, так и у тувинцев найдено влияние полиморфизма B/b гена VDR на течение туберкулезной инфекции. В выборке жителей г. Томска аллель b был ответственен за небольшой объем поражения легкого, а у тувинцев – за отсутствие деструкции при ТБ.
3.4.2 Анализ ассоциаций исследованных генов с количественными признаками туберкулеза
Туберкулез характеризуется специфическими проявлениями признаков, многие из которых имеют не качественную, а количественную природу. В связи с этим, одним из важных аспектов изучения генетических основ туберкулеза представляется анализ наследственной составляющей количественных признаков, существенных в патогенезе заболевания. С целью оценки влияния полиморфизма генов NRAMP1, VDR, IL1B, IL12B, IL1RN на течение туберкулезного процесса проведен поиск ассоциаций изучаемых маркеров с количественными, патогенетически важными признаками туберкулеза.
В эту часть исследования включили группу больных вторичным туберкулезом легких (181 человек), которую на 91% (165 человек) составили пациенты с распространенным туберкулезом, остальным был выставлен диагноз очагового туберкулеза легких и туберкулемы. Для остальных пациентов с вторичным ТБ показатели общего анализа крови на момент начала заболевания оказались недоступны.
Оценивали влияние изученных полиморфизмов на показатели крови при туберкулезе легких: гемоглобин, эритроциты, лейкоциты, скорость оседания эритроцитов (СОЭ), уровень палочкоядерных и сегментоядерных нейтрофилов, эозинофилов, лимфоцитов и моноцитов. Известно, что некоторые параметры крови зависят от пола и возраста индивида. Так, у русских г. Томска, больных туберкулезом показана зависимость от пола и возраста для лейкоцитов, СОЭ и моноцитов. В связи с этим перечисленные показатели анализировали отдельно в группе мужчин и женщин, к тому же вводилась поправка на возраст. Учитывая статистически значимые отклонения распределений большинства исследованных признаков от закона Гаусса по данным теста Колмогорова–Смирнова, сравнение проводилось с помощью непараметрических критериев Краскела–Уоллиса и Манна-Уитни [Гланц С., 1998].
Обнаружены ассоциации исследованных генов с рядом количественных показателей (табл. 23). Для полиморфизма 1188А/С гена IL12B показана связь с уровнем СОЭ и выраженностью палочкоядерного сдвига влево лейкоцитарной формулы, при этом генотип 1188А/С ассоциирован с повышением уровня палочкоядерных нейтрофилов независимо от пола больного и со значительным повышением уровня СОЭ у женщин при туберкулезе. В норме у женщин скорость оседания эритроцитов состаляет от 4 до 15 мм в час [Гольдберг Е.Д., 1989]. Так, полиморфизм 1188А/С гена IL12B проявил дифференциальное влияние на уровень СОЭ у представителей разного пола.
Полиморфизм F/f гена VDR проявил ассоциацию с уровнем сегментоядерных нейтрофилов. Среднее количество сегментоядерных нейтрофилов для обладателей генотипа ff составило 54%, в то время как для носителей других генотипов этот показатель равнялся 59%. В норме у здоровых уровень сегментоядерных нейтрофилов составляет 42,9% – 59,3% [Гольдберг Е.Д., 1989]. Таким образом, выявленная ассоциация прогностически нейтральна для туберкулеза, поскольку средний уровень сегментоядерных нейтрофилов при любом варианте гена оставался в пределах нормы. Для полиморфизмов генов NRAMP1, IL1B, IL1RN и варианта B/b гена VDR не показано связи с количественными признаками туберкулеза.
Таким образом, с помощью дисперсионного анализа удалось установить ассоциацию гена IL12B с количественными патогенетически важными признаками туберкулеза: палочкоядерным сдвигом лейкоцитарной формулы влево и с уровнем СОЭ у женщин. Известно, что степень ядерного сдвига нейтрофилов влево и уровень повышения СОЭ совпадают с активностью и тяжестью туберкулезного процесса [Шмелев Н.А., 1959; Кан Е.Л., 1972].
Таблица 23 Средние значения количественных признаков у носителей разных генотипов исследованных полиморфизмов
| Ген/ Поли-морфизм | Гено-типы | N | Признак | Среднее значение признака | S.D. | р для теста Краскела - Уоллиса | р для LSD теста |
| IL12B 1188A/C | AA | 97 | Палочко-ядерные нейтрофи-лы (%) | 5,206 | 4,943 | 0,031 | АА-АС* 0,007 |
| AC | 60 | 7,567 | 5,782 | АС-СС* 0,907 | |||
| CC | 11 | 7,364 | 5,372 | СС-АА* 0,201 | |||
| AA | 34 | СОЭ у женщин (мм/ч) | 24,765 | 19,285 | 0,010 | АА-АС* 0,006 | |
| AC | 24 | 39,833 | 20,466 | АС-СС* 0,044 | |||
| CC | 4 | 17,750 | 21,608 | СС-АА* 0,507 | |||
| VDR F/f | FF | 73 | Сегменто-ядерные нейтрофи-лы (%) | 59,890 | 9,389 | 0,039 | FF-Ff* 0,552 |
| Ff | 75 | 59,000 | 9,063 | Ff-ff* 0,034 | |||
| ff | 20 | 54,100 | 8,012 | ff-FF* 0,006 |
Примечание. N - численность генотипов; S.D. - стандартное отклонение; р - достигнутый уровень значимости; * - указаны генотипы, для которых сравнивали среднее значение признака
Важным обстоятельством является то, что ген IL12B проявил связь, как с туберкулезом, так и с качественными и количественными признаками заболевания. Кроме того показана ассоциация IL12B с туберкулезом, выявленная при помощи TDT – теста, анализирующего семейные данные. Это свидетельствует о неслучайном характере полученных ассоциаций и о том, что изученный ген играет важную роль в формировании подверженности к туберкулезу у русского населения г. Томска. Однако в исследовании тувинцев не показано ассоциаций с этим геном [Рудко А.А., 2004].
Интересным представляется то, что у жителей Тувы при поиске ассоциаций с количественными признаками туберкулеза найдена связь полиморфизма B/b гена VDR с количеством палочкоядерных нейтрофилов и полиморфизма VNTR гена IL1RN с уровнем СОЭ. Аллель b гена VDR оказался ассоциирован с нормальным количеством палочкоядерных нейтрофилов при туберкулезе, а аллель В – с палочкоядерным сдвигом влево лейкоцитарной формулы. Аллель А2 гена IL1RN проявил связь со значительным повышением СОЭ при ТБ у тувинцев [Рудко А.А., 2004]. В целом можно отметить, что при сравнении полученных ассоциаций полиморфизмов с качественными и количественными параметрами туберкулеза у русских г. Томска и у жителей Тувы найдены отличия по всем исследованным признакам, что говорит об этнической зависимости генетических основ подверженности к туберкулезу.
Заключение
При изучении роли генов–кандидатов подверженности туберкулезу в этиологии и клинических проявлениях заболевания использован следующий алгоритм работы. На первом этапе проведен анализ популяционной распространенности исследуемых полиморфизмов. Второй этап заключался в определении ассоциаций генетических маркеров с туберкулезом. Третий этап включал поиск связи аллельных вариантов генов с качественными и количественными патогенетически значимыми параметрами заболевания. Кроме того, проведен сравнительный анализ полученных результатов с исследованием тувинской популяции, выполненным ранее по той же методологии [Рудко А.А., 2004].
Изучена популяционная распространенность полиморфных вариантов генов NRAMP1, VDR, IL1B, IL1RN, IL12B у русских г. Томска. Это дало возможность провести сравнение между характерными особенностями распространения аллелей генов–кандидатов туберкулеза в различных популяциях мира. При этом выявлена специфичность их распространения у жителей г. Томска. Результаты сравнительного анализа представляются важными с точки зрения обнаружения связи между особенностями распределения частот аллелей генов–кандидатов туберкулеза и заболеваемостью этой инфекционной патологией в различных популяциях.
При сравнении частот аллелей и генотипов у русских и тувинцев показаны отличия практически по всем исследованным полиморфизмам, кроме варианта 274С/Т гена NRAMP1, однако статистические показатели сравнения генотипов для этого полиморфизма были пограничными (р=0,064). Структура неравновесия по сцеплению между парами полиморфных вариантов гена NRAMP1 оказалась идентичной у русских и тувинцев. Неравновесие между другими исследованными генетическими маркерами отличалось в изученных этнических группах. При сравнении частот аллелей и генотипов у больных туберкулезом русских и тувинцев выявлены отличия по всем полиморфизмам. В целом при межпопуляционном сравнении особенностий распределения аллелей генов-кандидатов ТБ и складывающихся межлокусных взаимодействиях у русских и тувинцев выявлены значительные отличия, что представляется важным с точки зрения генетической эпидемиологии.
Первостепенное внимание было уделено поиску ассоциаций полиморфизма генов NRAMP1, VDR, IL1B, IL1RN, IL12B с туберкулезом. Основой в проведенном исследовании вклада генов–кандидатов туберкулеза в формирование подверженности к заболеванию служил комплексный подход, заключающийся в характеристике полиморфизма этих генов, как на популяционном уровне, так и на семейном. При сравнении частот аллелей и генотипов у больных и здоровых установлена связь полиморфизма 1188А/С IL12B с туберкулезом (р=0,044 и р=0,035 соответственно), причем у носителей генотипа 1188С/С риск заболеть первичным туберкулезом возрастал в 13 раз, а вторичными формами инфекции – в 8 раз. Полученная связь генетического маркера с патологией методом случай–контроль подтверждена на семейной выборке больных. Дети с туберкулезом лишь в 13% случаев наследовали от родителей аллель 1188А, тогда как аллель 1188С - в 87% (TDT=8,07, р=0,005). С другими исследованными генами–кандидатами туберкулеза ассоциаций по данным теста TDT не получено. Также показано, что полиморфизм 1188А/С гена IL12B ассоциирован не с любым клиническим вариантом вторичного туберкулеза легких, а лишь с распространенным (объем поражения – более одной доли) (р=0,022), деструктивным ТБ (р=0,012).
Выявлено наличие ассоциации с заболеванием полиморфизма 1465-85G/A гена NRAMP1. У заболевших первичным туберкулезом чаще, чем в контрольной группе встречался гетерозиготный генотип 1465-85G/A (р=0,004), риск заболевания у этих индивидов был в 3 раза выше, чем у обладателей других генотипов этого полиморфизма. К тому же показана протективная роль в отношении первичного туберкулеза для генотипа 1465-85G/G NRAMP1.
Показана связь полиморфизма 274С/Т гена NRAMP1 с вторичным туберкулезом легких, причем с деструктивными (р=0,005) и распространенными (р=0,002) формами. Индивиды с генотипом 274С/Т преобладали в 1,66 раза в группе больных по сравнению с контролем. Лица, обладающие генотипом 274С/C, статистически значимо чаще встречались среди здоровых (OR=0,54).
В результате проведенного анализа установлена значимость VNTR полиморфизма гена IL1RN при туберкулезе. Частота аллеля А2 была выше в группе больных по сравнению с контролем (р=0,023). При сравнении частот генотипов выявлена предрасполагающая к ТБ роль гетерозигот А1/А2 (OR=2,10, р=0,030). Установлено, что выявленная ассоциация VNTR гена IL1RN c патологией обусловлена связью этого полиморфизма с вторичными формами туберкулеза легких, так как распределение генотипов различалось в группах лиц с вторичным генезом заболевания и здоровых (р=0,025), а в выборках с первичным туберкулезом и контрольной отличий не показано. Кроме того выявлена связь этого маркера с распространенным (р=0,018) и деструктивным (р=0,017) вторичным туберкулезом легких.
Ген IL1B, продукт экспрессии которого является провоспалительным цитокином, проявил статистически значимую связь с вторичным деструктивным туберкулезом легких. Аллель А2 полиморфизма +3953 этого гена чаще определяли у больных, чем у здоровых (р=0,008). Распределение генотипов в группе больных деструктивными формами заболевания и здоровых также различалось (р=0,022). Кроме того аллель А2 оказался ассоциирован с небольшим объемом туберкулезного поражения в легком (1-2 сегмента) (р=0,015) (рис. 6)
При определении неравновесия между полиморфизмами генов IL1B и IL1RN показано, что аллель +3953А1 и аллель А1 полиморфизма VNTR находятся в фазе отталкивания, мера неравновесия для них составила –0,033 (р=0,009). При сравнении частоты гаплотипа IL1RN*A1A1/IL1B*A1A1 в группах больных туберкулезом и здоровых индивидов найдено, что статистически чаще это сочетание встречается в контрольной выборке (р=0,003). При этом риск заболеть туберкулезом у носителей этого гаплотипа был равен 0,50. Таким образом, гаплотип IL1RN*A1A1/IL1B*A1A1 имеет протективный эффект и защищает его обладателя от заболевания туберкулезом.
Рис. 6. Ассоциации исследованных генов с туберкулезом
При анализировании анамнестических данных показано, что родственники индивидов больных туберкулезом, не имеющие контакта с пробандами, страдают от этого заболевания чаще, чем родственники здоровых людей (OR=3,63, p<0,000). Это свидетельствует о наследственной предрасположенности к туберкулезу.
При сравнении выявленных ассоциаций исследованных генов с ТБ у русских г. Томска и коренных жителей Тувы показаны значительные отличия. Результаты, полученные при изучении тувинского этноса, свидетельствуют о незначительном вкладе исследованных полиморфизмов в формирование подверженности к туберкулезу [Рудко А.А., 2004]. У жителей г. Томска, напротив, получены ассоциации для 5 из 9 исследованных полиморфизмов генов-кандидатов предрасположенности к ТБ. Такие отличия в проявлении эффекта изученных генов, вероятно, обусловлены разным генетическим фоном у русских и тувинцев. Известно, что каждый ген действует не самостоятельно, а во взаимодействии со множеством других генов, следовательно, эффекты генов проявляют зависимость от того генетического фона, на котором действует ген.
Установлено, что полиморфизмы 469+14G/C гена NRAMP1 и B/b гена VDR не предрасполагают к туберкулезу, однако они оказывают влияние на течение возникшего заболевания. При сравнении распределений генотипов и частот аллелей 469+14G/C гена NRAMP1 в группах больных туберкулезом с деструкцией легочной ткани и больных туберкулезом без деструкции выявлены статистически значимые отличия. Так, частота аллеля 469+14С этого гена в выборке больных с экссудативно-некротическим и пролиферативно-некротическим типом воспалительной реакции была выше, чем в группе больных с пролиферативными и экссудативным типом воспалительной реакции (р=0,027). Кроме того, этот полиморфизм оказался значимым в определении обьема поражения при туберкулезе легких. Частота аллеля 469+14С в группе больных распространенным туберкулезом превышала таковую в группе больных с ограниченной формой заболевания (р=0,016).
Таким образом, можно говорить о вкладе 469+14С аллеля гена NRAMP1 не только в формирование деструкции при туберкулезе, но и в увеличение зоны поражения. Показано влияние полиморфизма B/b гена VDR на распространенность зоны туберкулезного поражения, поскольку аллель b статистически значимо чаще выявляли у больных с легочным поражением в пределах 1-2 сегментов (р= 0,011).
Обнаружены ассоциации исследованных генов с рядом количественных показателей. Для полиморфизма 1188А/С гена IL12B показана связь с уровнем СОЭ и выраженностью палочкоядерного сдвига влево лейкоцитарной формулы, при этом аллель 1188С ассоциирован с повышением палочкоядерных нейтрофилов независимо от пола больного (р=0,031), а генотип 1188АС – с значительной степенью повышения СОЭ у женщин (р=0,010) (рис. 7).
Рис. 7. Ассоциации исследованных генов с качественными и количественными, патогенетически значимыми параметрами туберкулеза
При сравнении показанных ассоциаций исследованных полиморфизмов генов с патогенетически важными параметрами ТБ у русских и тувинцев выявлены различия. У коренных жителей Тувы максимально значимыми с точки зрения прогнозирования клинического течения туберкулезного процесса оказались полиморфизм B/b гена VDR и полиморфизм VNTR гена IL1RN. Для этих генетических маркеров выявлены ассоциации с деструкцией при ТБ, повышением СОЭ и со сдвигом лейкоцитарной формулы влево [Рудко А.А.,2004]. У жителей г. Томска ассоциированными с перечисленными параметрами туберкулеза оказались другие полиморфизмы. Таким образом, при межпопуляционном сравнении генов-кандидатов подверженности к ТБ у русских и тувинцев выявлены отличия, как по генетической структуре популяций, так и по вовлеченности в формирование генетической основы предрасположенности к туберкулезу и его особенностей клинического течения.
Функциональные механизмы, определяющие полученные ассоциации, возможно, связаны с действием продуктов экспрессии этих генов на патогенез заболевания. В случае подтверждения этой гипотезы, аллели 1465-85А гена NRAMP1, 1188С гена IL12B могут стать маркерами предрасположенности к первичному туберкулезу, а аллели 274Т гена NRAMP1, A2 VNTR полиморфизма гена IL1RN, +3953A2 гена IL1B, 1188С гена IL12B – маркерами подверженности к вторичному туберкулезу с деструкцией легочной ткани (рис. 6). Кроме того, зная генотип больного по полиморфизмам 469+14G/С гена NRAMP1 и B/b гена VDR, вероятно можно будет прогнозировать течение туберкулезного процесса (рис. 7). В целом, полученные данные позволят глубже проникнуть в патогенез туберкулеза, его отдельных клинических форм, также они представляются важными для формирования представления о связи между частотой аллелей генов-кандидатов ТБ и особенностями распространения этого инфекционного заболевания.
Выводы
Выявлены особенности в распределении частот аллелей, изученных генов–кандидатов подвержености к туберкулезу, у русских жителей г. Томска по сравнению с другими популяциями мира. При сравнении с тувинцами показаны отличия в распределении генотипов и частот аллелей по всем рассматриваемым генам, как у здоровых индивидов, так и у больных туберкулезом.
У русских жителей г. Томска наблюдается неравновесие по сцеплению между четырьмя парами полиморфизмов гена NRAMP1: 469+14G/C и 274C/T (D=+0,104), 469+14G/C и 1465-85G/A (D=+0,078), 274C/T и 1465-85G/A (D=+0,085), D543N и 1465-85G/A (D=+0,017) и между полиморфизмами B/b и F/f гена VDR (D=+0,053). Структура неравновесия по сцеплению между полиморфизмами гена NRAMP1 не отличается от таковой у тувинцев.
Родственники индивидов больных туберкулезом заболевают этой инфекцией чаще, чем родственники здоровых лиц, даже при отсутствии семейного контакта с больным пробандом (OR=3,63, p<0,000).
Полиморфные варианты 1188A/C гена IL12B и 1465-85G/A гена NRAMP1 ассоциированны с туберкулезом первичного генеза у русских г. Томска. Распространенный вторичный туберкулез с деструкцией легочной ткани связан с изменчивостью по 274С/Т гена NRAMP1, 1188A/C гена IL12B, VNTR гена IL1RN, а ограниченный вторичный туберкулез с деструкцией легочной ткани – с полиморфизмом +3953А1/А2 гена IL1B.
Генотип 1465-85G/G NRAMP1 проявляет протективный эффект при первичном туберкулезе (OR=0,33, p=0,005), а генотипы 274С/С гена NRAMP1 (OR=0,51, p=0,005), А1/А1 IL1RN (OR=0,55, p=0,007) и гаплотип IL1RN*A1A1/IL1B*A1A1 (OR=0,50, p=0,003) – при вторичном туберкулезе. Рисковыми генотипами для туберкулеза являются 1465-85G/A NRAMP1 (OR=3,16, p=0,002) и 1188C/C IL12B (OR=13,47, p=0,013) при первичном генезе заболевания, 1188C/C IL12B (OR=7,43, p=0,023), 274С/Т NRAMP1 (OR=1,75, p=0,026), 274Т/Т NRAMP1 (OR=5,01, p=0,037) и А1/А2 IL1RN (OR=2,20, p=0,002) при вторичном туберкулезе.
Для полиморфизмов 1188А/С гена IL12B, 469+14G/C гена NRAMP1 и B/b гена VDR выявлена ассоциация с качественными и количественными патогенетически важными признаками туберкулеза: уровнем палочкоядерных нейтрофилов, показателем скорости оседания эритроцитов у женщин, деструкцией ткани легкого и объемом поражения легочной ткани при туберкулезе.
Выявлены отличия в структуре генетической компоненты подверженности к туберкулезу у русских и тувинцев, заключающиеся в разном вкладе исследуемых генов в формирование предрасположенности к заболеванию и в клинические проявления туберкулеза.
Список литературы
-
Авербах М.М. Иммунология и иммунопатология туберкулеза. - М.: Медицина, 1976. - 311с.
-
Авербах М. М., Литвинов В. И., Гергерт Г. В. Иммунологические аспекты легочной патологии. - М.: Медицина, 1980. - 113 с.
-
Авербах М. М., Гергерт В. Я., Мороз А. М. и др. Современные аспекты фтизиоиммунологии // Сб. трудов ЦНИИТ. – 1982. - С. 3-9.
-
Авербах М. М., Мороз А. М., Апт А. С. и др. Межлинейные различия чувствительности мышей к туберкулезу // Иммунология. - 1980. - №2. - С. 42-43.
-
Алтухов Ю. П. Генетические процессы в популяциях. – М.: ИКЦ "Академкнига", 2003. – 431 с.
-
Алтухов Ю. П., Курбатова О. Л. Наследственность человека и окружающая среда. – М.: Наука, 1984. – С. 7-34.
-
Апт А. С., Никоненко Б. В., Мороз А. М., Авербах М. М. Генетический анализ факторов, детерминирующих восприимчивость к туберкулезу // Бюл. Эксперимю биол. – 1982. – № 12. – С. 83-85.
-
Апт А. С. Генетические аспекты выявления групп риска по туберкулезу // Проблемы туберкулеза. - № 10. – С. 65-68.
-
Белиловский Е. М., Борисов С. Е., Дергачев А. В. и др. Заболеваемость туберкулезом в России: ее структура и динамика // Проблемы туберкулеза. – 2003. - № 7. – С. 4-11.
-
Березовский Б. А., Мостовой Ю. М., Пухлик Б. М., Михей Л. В. Проверка гипотезы мультифакториального типа наследования предрасположенности к туберкулезу легких // Проблемы туберкулеза. – 1986. – №2. – С.24-26.
-
Богадельникова И. В., Сергеев А. С., Агапова Р. К., Перельман М. И. Исследование уровней гетерозиготности у больных туберкулезом легких с различной эффективностью лечения // Вестник РАМН. – 2000. – № 3. – С. 15-21.
-
Вахидова Г. А., Еремеев В. В., Убайдуллаев А. М. Иммунологические механизмы патогенеза туберкулеза // Проблемы туберкулеза. – 1991. – № 5. – С. 69-71.
-
Вейр Б. Анализ генетических данных. – М.: Мир, 1995. – 400 с.
-
Визель А. А., Гурелева М. Э. Туберкулез. – М.: ГЭОТАР Медицина, 2000. - 208 с.
-
Галактионов В. Г. Иммунология. – М.: МГУ, 1998. – 440 с.
-
Гамалея Н. Ф. Инфекция и иммунитет. – М.: Медицина, 1939. – 280 с.
-
Гланц С. Медико-биологическая статистика. – М.: Практика, 1998. - 459 с.
-
Гольдберг Е. Д. Справочник по гематологии с атласом микрофотограмм. – Томск: Изд-во Том. Ун-та, 1989. – 468 с.
-
Давыдовский И. В. Проблема причинности в медицине. – М.: Медицина, 1962. – 728 с.
-
Еремеев В. В. Взаимодействие макрофаг-микобактерия в процессе реакции микроорганизма на туберкулезную инфекцию // Проблемы туберкулеза. – 2004. – № 8. – С. 3-7.
-
Ерохин В. В. Основные итоги и перспективы работы сотрудничающего центра ВОЗ по борьбе с туберкулезом в Российской Федерации. // Проблемы туберкулеза. – 2003. – № 3. – С. 11-21.
-
Ерохин В. В. Субклеточная морфология легких при экспериментальном туберкулезе // Автореф. дис. д-ра мед. наук. – М., 1974 – 42 с.
-
Ерохин В. В., Земскова З. С. Современные представления о туберкулезном воспалении // Проблемы туберкулеза. – 2003. – № 3. – С. 11-21.
-
Животовский Л. А. Интеграция полигенных систем в популяциях. Проблемы анализа комплексных признаков. – М.: Наука, 1984. – 183 с.
-
Животовский Л. А. Статистические методы анализа частот генов в природных попкляциях // М.: ВИНИТИ, 1983. – Т. 8. – С. 76-104.
-
Земскова З. С., Дорожкова И. Р. Скрыто протекающая туберкулезная инфекция. – М: Медицина, 1984. – 224 с.
-
Имангулова М. М., Бикмаева А. Р., Хуснутдинова Э. К. Исследование полиморфных локусов D543N и 3-UTR гена NRAMP1 у больных инфильтративным туберкулезом легких в Башкортостане // Медицинская генетика. – 2004. – № 8. – Т. 4. – С. 376-379.
-
Имангулова М. М., Бикмаева А .Р., Хуснутдинова Э. К. Полиморфизм кластера гена интерлейкина 1 у больных туберкулезом легких // Цитокины и воспаление. – 2005. – № 1. – Т. 4. – С. 36-41.
-
Кан Е. Л. Изменения в системе крови и их диагностическое значение / Руководство по туберкулезу органов дыхания. – М., 1972. - С.116-128.
-
Клеточная биология легких в норме и при патологии. / Под ред. В. В. Ерохина, Л. М. Романовой // М.: Медицина, 2000. – 469 с.
-
Кноринг Б. Е., Фрейдлин И. С., Симбирцев А. С. и др. Характер специфического иммунного ответа и продукция цитокинов мононуклеарами крови больных разными формами туберкулеза легких // Медицинская иммунология. – 2001. – Т. 3. - № 1. – С. 61-69.
-
Кобринский Б. А. Формирование групп риска и прогноз развития заболеваний // Вестник АМН. – 1987. – № 4. – С. 85-89.
-
Краснов В. А. Калачев И. В. Степанов Д. В. и др. Перспективы развития противотуберкулезной помощи населению Сибири. // Проблемы туберкулеза. – 2003. - № 5. – С. 3-6.
-
Лакин Г. Ф. Биометрия. – М.: Наука, 1990. – 300 с.
-
Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику // М.: Медицина, 1984. – 160 с.
-
Литвинов В. И., Чуканова В. П., Маленко А. Ф. и др. Проблемы иммуногенетики болезней легких // Сборник трудов ЦНИИ туберкулеза МЗ СССР. – 1983. – Т. 37. – С. 16-19.
-
Литвинов В. И., Гергерт В. Я., Мороз А. М. и др. Иммунология туберкулеза: современное состояние проблемы // Вестник РАМН. – 1999. – №7. – С. 8-11.
-
Маниатис Т., Фрич Э., Сэмбук Дж. Методы генетической инженерии. Молекулярное клонирование. – М.: Мир, 1984. – 480 с.
-
Меньшиков В.В. Лабораторные методы исследования в клинике. - М.: Медицина, 1987. - 350с.
-
Мороз А. М. Иммуногенетические механизмы резистентности к туберкулезу (экспериментальное исследование) / Дис. д-ра мед. наук. – М., 1984. – 42 с.
-
Мурашкина Г.С., Алексеева Т.В., Ревякина О.В., Новикова Н.М. Туберкулез в западной Сибири //Современная фтизиатрия и проблемы туберкулеза XXI века. - Тезисы докладов. - 1999. - С.5.
-
Онищенко Г. Г. Эпидемическая ситуация в Российской Федерации и меры по ее стабилизации // Проблемы туберкулеза. – 2003. - № 11. – С. 4-9.
-
Пальцев М. А. Молекулярная медицина // Вестник молодых ученых. – 2002. - № 4. – С. 64-84.
-
Пальцев М. А. Значение биомедицинских фундаментальных исследований для фтизиатрии // Проблемы туберкулеза. – 2004. - № 3. – С. 3-7.
-
Патофизиология: учебник для медицинских вузов / Под ред. В. В. Новицкого, Е. Д. Гольдберга // Томск: Из-во Том. ун-та, 2001. – 716 с.
-
Перельман М. И., Хомяков Ю. Н., Киселев В. И. и др. Молекулярная медицина и лечение туберкулеза // Проблемы туберкулеза. – 2001. - № 5. – С. 5-7.
-
Перельман М. И. Основные итоги противотуберкулезной работы в России в 2001 г. // Проблемы туберкулеза. – 2003. - № 2. – С. 3-11.
-
Пименов Е. В., Тотолян А. А., Бывалов А. А. и др. Современные представления о патогенезе инфекционных заболеваний // Вестник РАМН. – 2003. – № 6. – С. 3-9.
-
Покровский В. И., Авербах М. М., Литвинов В. И., Рубцов И. В. Приобретенный иммунитет и инфекционный процесс. – М.: Медицина, 1979. – 280 с.
-
Пузик В. И., Уварова О. А., Авербах М. М. Патоморфология современных форм легочного туберкулеза. – М.: Медицина, 1973. – 244 с.
-
Пузырев В. П. Генетика мультифакториальных заболеваний: между прошлым и будущим // Медицинская генетика. – 2003. – Т.2. № 12. – С. 498-508.
-
Пузырев В. П., Никитин Д. Ю., Напалкова О. В. Ген NRAMP1: структура, функция и инфекционные болезни человека // Молекулярная генетика, микробиология и вирусология. – 2002. – №3. – С.34-40.
-
Пузырев В. П., Степанов В. А. Патологическая анатомия генома. – Новосибирск: Наука, 1997. – 224 с.
-
Рабухин А.Е. Туберкулез органов дыхания у взрослых. – М.: Медицина, 1976. - 328с.
-
Рабухин А. Е. Исторический очерк развития учения о туберкулезе. Руководство по туберкулезу. – М., 1959 – 134 с.
-
Рабухин А. Е. Эпидемиология и патогенез легочного туберкулеза.– М., 1948 – 120 с.
-
Ридер Г. Л. Эпидемиологические основы борьбы с туберкулезом // Пер. с англ. – М.: Весь Мир. – 2001. – 192 с.
-
Ройт А. Основы иммунологии. – М.: Мир, 1991. – 327 с.
-
Ройт А., Бростофф Дж., Мейл Д. Иммунология. – М.: Мир, 2000. – 592 с.
-
Рудко А. А. Аллельные варианты генов подверженности к туберкулезу у тувинцев / А.А. Рудко: Автореф. дисс. канд. мед. наук. - Томск, 2004. - 20 с.
-
Рудко А. А., Ондар Э. А., Фрейдин М. Б., Пузырев В. П. Полиморфизм генов NRAMP1 и IL12B у больных туберкулезом и здоровых жителей республики Тыва / Актуальные проблемы сохранения здоровья населения Республики Тыва // Под ред. Ондар Э. А., Монгуш Р. Ш. – Вып. 3. – Кызыл: ТывГУ, 2003. – С. 55-62.
-
Рудко А. А., Ондар Э. А., Фрейдин М. Б., Пузырев В. П. Полиморфизм генов NRAMP1 и IL12B у больных туберкулезом Республики Тыва / Сборник тезисов "Вопросы сохранения и развития здоровья населения Севера и Сибири" / Красноярск, 2003. – С. 372-374.
-
Рудко А. А., Ондар Э. А., Фрейдин М. Б., Пузырев В. П. Полиморфизм генов-кандидатов подверженности к туберкулезу у населения Республики Тыва / Сборник тезисив 3-го съезда генетиков и селекционеров России "Генетика в XXI веке: современное состояние и перспективы развития" / М. – 2004. – С. 93.
-
Рудко А. А., Фрейдин М. Б. Генетика предрасположенности к туберкулезу / Генетика человека и патология: Сборник научных трудов / Под. ред. В. П. Пузырева. – Вып. 6. – Томск: "Печатная мануфактура". – 2002. – С. 170-176.
-
Рудко А. А., Фрейдин М. Б. Генетические основы подверженности к туберкулезу // Тихоокеакский медицинский журнал. – 2002. - №1(8). – С. 61-61.
-
Рудко А. А., Фрейдин М. Б., Пузырев В. П. Полиморфизм генов NRAMP1 и IL12B у больных туберкулезом Республики Тыва / Сборник тезисов 13-го национального конгресса по болезням органов дыхания / Санкт-Петербург, 2003. – С. 289.
-
Сабадаш Е. В., Павлов В. А., Кравченко М. А. и др. К вопросу о формировании естественной резистентности к туберкулезу / Материалы междун. конф. "Туберкулез – старая проблема в новом тысячелетии", 1-5 июля 2002г. – М.: Медицина и жизнь. – С. 150-151.
-
Селедцова Г. В., Козлов В. А. Иммунорегуляторные свойства моноцитов/макрофагов у больных туберкулезом легких // Проблемы туберкулеза. – 1991. - № 5. – С. 54-56.
-
Сергеев А. С., Богадельникова И. В., Агапова Р. К., Перельман М. И. Анализ уровней гетерозиготности по локусам PL, TF, PGM1, ACP1, HP, GC, GLO1, C3 и ESD у больных туберкулезом легких с различной эффективностью лечения // Генетика. – 2001. – Т.37. № 12. – С. 1673-1680.
-
Симбирцев А. С. Цитокины – новая система регуляции защитных сил организма // Цитокины и воспаление. – 2002. – Т.1.№ 1. – С. 9-16.
-
Скворцова Л. А., Павлова М. В., Виноградова Т. И., Арчакова Л. И. Комплексная терапия туберкулеза легких с применением рекомбинантных интерлейкинов // Проблемы туберкулеза. – 2003. – № 10. – С. 9-12.
-
Скутко А.Я. Особенности клиники деструктивных и кавернозных форм туберкулеза легких у впервые выявленных больных //Врачебное дело. - 1970. - №12. - С.61-65.
-
Состояние противотуберкулезной помощи населению сибирского и дальневосточного федеральных округов по итогам работы в 2003 году / Под ред. В. А. Краснова // Новосибирск. – 2004. – 122 с.
-
Справочные материалы по эпидемиологии туберкулеза в Сибирском и Дальневосточном федеральном округах / Выездное заседание президиума СО РАМН 19 мая 2004 г., г. Новосибирск.
-
Стрелис А.К. Актовая речь //Современная фтизиатрия и проблемы туберкулеза XXI века. - Томск, 1999. - 69с.
-
Стрелис А. К. Туберкулез сегодня – инфекционный агрессор и бомба замедленного действия / Сборник трудов международной научно-практической конференции "Проблемы туберкулеза и современные пути их решения", 7-8 октября 2004 г. – Томск. – С. 19-23.
-
Струков А. И. Формы легочного туберкулеза в морфологическом освещении. – М., 1948. – 160 с.
-
Cтруков А.И. Кауфман О.Я. Гранулематозное воспаление и гранулематозные болезни. - М: Медицина, 1989. - 184с.
-
Тотолян А. А., Фрейдлин И. С. Клетки иммунной системы. - СПб.: Наука, 2000. – 231 с.
-
Туберкулез. Руководство для врачей / Под ред. А. Г. Хоменко. – М.: Медицина, 1996. – 496 с.
-
Уварова О. А., Ильина Т. Я., Зикеев В. В. Взаимосвязь морфологических иммунных реакций и характера туберкулезного процесса в легких // Проблемы туберкулеза. – 1981. – № 4. – С. 65-68.
-
Урсов И. П. Эпидемиология туберкулеза. – Новосибирск, 1997. – 112 с.
-
Флейс Д. Статистические методы для изучения таблиц долей и пропорций. - М.: Финансы и статистика, 1989. – 319 с.
-
Фогель Ф., Мотульски А. Генетика человека: Пер. с англ. – М.: Мир, 1989. – Т.1 – 313 с.
-
Фрейдлин И.С. Система мононуклеарных фагоцитов. - М., 1984. - 272с.
-
Хаудамова Г. Т. Риск заболевания туберкулезом основных этнических групп Казахстана // Проблемы туберкулеза. – 1991. – №4. – С. 22-25.
-
Холмовская М. Б. Исторический очерк развития медико-биологического учения о туберкулезе. – М., 1997. – 247 с.
-
Хоменко А. Г. Проблемы наследственности при болезнях легких. – М.: Медицина, 1990. – 240 с.
-
Хонина Н. А., Никонов С. Д., Шпилевский С. В. и др. Особенности иммунитета у больных с различными формами туберкулеза легких // Проблемы туберкулеза. – 2000. – №1. – С. 30-32.
-
Чуканова В. П., Сергеев А. С., Мороз А. М., Гафуров К. Г. Роль наследственных факторов при туберкулезе // Проблемы туберкулеза. – 1981. – №11. – С. 46-50.
-
Чуканова В. П., Литвинов В. И., Поспелов Л. Е., Слогоцкая Л. В. Значение факторов наследственной предрасположенности в развитии и течении легочного туберкулеза // Проблемы туберкулеза. – 1995. – №2. – С. 6-9.
-
Чуканова В. П., Поспелов Л. Е., Маленко А. Ф. Значение факторов наследственной предрасположенности при туберкулезе и других гранулематозных заболеваниях легких // Проблемы туберкулеза. – 2001. – №2. – С. 33-36.
-
Шевченко Ю. Л. Борьба с туберкулезом в России на пороге ХХ1 века // Проблемы туберкулеза. – 2000. - № 3. – С. 2-5.
-
Шмелев Н.А. Цитологический анализ крови и его значение при туберкулезе. -М.: Медицина, 1959. – 112 с.
-
Штефко В. Г. Туберкулез и конституция. – Л., 1930. – 240 с.
-
Ярилин А. А. Симбиотические взаимоотношения клеток иммунной системы // Иммунология. – 2001. - №4. – С. 16-20.
-
Ярилин А. А. Межклеточная кооперация при иммунном ответе // Вестник РАМН. – 1999. - №4. – С. 25-29.
-
Abe T., Linuma Y., Ando M. et al. Nramp1 polymorphisms susceptibility and clinical features of tuberculosis // J. Infect. Dis. – 2003. – Vol. 46. – P. 215-220.
-
Abel L., Casanova J. L. Genetic predisposition to clinical tuberculosis: bridging the gap between simple and complex inheritance // Am. J. Hum. Genet. – 2000. – Vol. 67. – P. 274-277.
-
Abel L., Dessein A. J. The impact of host genetics on susceptibility to human infectious diseases // Curr. Opin. Immunol. – 1997. – Vol. 9. – P. 509-516.
-
Altare F., Jouanguy E., Lamhamedi S. et al. Mendelian susceptibility to mycobacterial infection in man // Curr. Opin. Immunol. – 1998. – Vol. 10. – P. 413-417.
-
Baghdadi J. E., Remus N., Benslimane A. et al. Variants of the human NRAMP1 gene and susceptibility to tuberculosis in Morocco // Int. J. Tuberc. Lung Dis. – 2003. – Vol. 7(6). – P. 599-602.
-
Barton C. H., Biggs T. E., Baker S. T. et al. Nramp1: a link between intracellular iron transport and innate resistance to intracellular pathogens // J. Leuk. Biol. – 1999. – Vol. 66. – P.757-762.
-
Bellamy R. Genetic susceptibility to tuberculosis in human populations // Thorax. – 1998. – Vol. 53. – P. 588-593.
-
Bellamy R. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen // Clin. Science. – 2000. – Vol. 98. – P.245-250.
-
Bellamy R. The natural resistance-associated macrophage protein and susceptibility to intracellular pathogens // Microbes and Infection. – 1999. – Vol. 1. – P. 23-27.
-
Bellamy R., Beyers N., McAdam K. P. W. J. et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan // Proc. Natl. Acad. Sci. USA. – 2000. – Vol. 97. – P. 8005-8009.
-
Bellamy R., Hill A. V. S. Genetic susceptibility to mycobacteria and other infectious pathogens in humans // Curr. Opin. Immunol. – 1998. – Vol. 10. – P. 483-487.
-
Bellamy R., Ruwende C., Corrah T. et al. Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis // Tuber. Lung. Dis. – 1998. – Vol. 79(2). – P. 83-89.
-
Bellamy R., Ruwende C., Corrah T. et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene // J. Infect. Dis. – 1999. – Vol. 179. – P. 721-724.
-
Bellamy R., Ruwende C., Corrah T. et al. Variations in the NRAMP1 gene and susceptibility to tuberculosis in west Africans // N. Engl. J. Med. – 1998. – Vol. 338(10). – P. 640-644.
-
Blackwell J. M., Barton C. H., White J. K. et al. Genetic regulation of leishmanial and mycobacterial infections: the Lsh/lty/Bcg gene story continues // Immunol. Lett. – 1994. – Vol. 43. – P. 99-107.
-
Blackwell J. M., Barton C. H., White J. K. et al. Genomic organisation and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism // Mol. Med. – 1995. – Vol.1. – P. 194-205.
-
Blackwell M. J., Searle S. Genetic regulation of macrophage activation: understanding the function of Nramp1 (= Ity/Lsh/Bcg ) // Immunol. Lett. – 1999. – Vol. 65. – P. 73-80.
-
Bornman L., Campbell S. J., Fielding K. et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in west Africa: a case-control and family study // J. Infect. Dis. – 2004. – Vol. 190(9). – P. 1631-1641.
-
Bradley D. J. Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishimania donovani infection // Clin. Exp. Immunol. – 1977. – Vol. 30. – P. 130-140.
-
Brightbill H. D., Libraty D. H., Krutzik S. R. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors // Science. – 1999. – Vol. 285. – P. 732-736.
-
Cadranel J., Hance A. J., Milleron B. et al. The production of 1,25(OH)2D3 by cells recovered by bronchoalveolar lavage and the role of this metabolite in calcium homeostasis // Am. Rev. Respir. Dis. – 1988. – Vol. 138. – P. 984-989.
-
Canonne-Hergaux F., Gruenheid S., Govoni G., Gros P. The Nramp1 protein and its role in resistance to infection and macrophage function // Proc. Assoc. Am. Physicians. – 1999. – Vol. 111(4). – P. 283-289.
-
Cellier M., Belouchi A., Gros P. Resistance to intracellular infections: comparative genome analysis of NRAMP // Trends Genet. – 1996. – Vol. 92. – P. 201-204.
-
Cellier M., Govoni G., Vidal S. et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression // J. Exp. Med. – 1994. – Vol. 180. – P. 1741-1752.
-
Cellier M., Bergevin I., Boyer E. et al. Polyphyletic origins of bacterial Nramp transporters // Trends Genet. – 2001. – Vol. 17. – № 7. – P. 365-370.
-
Cervino A. C. L., Lakiss S., Sow O. et al. Fine mapping of a putative tuberculosis – susceptibility locus on chromosome –15q11-13 in African families // Hum. Mol. Genet. – 2002. – Vol. 11. – P. 1598-1603.
-
Cervino A. C. L., Lakiss S., Sow O., Hill A. V. S. Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea – Conakry // Ann. Hum. Genet. – 2000. – Vol. 64. – P. 507-512.
-
Chan T. Y. Vitamin D deficiency and susceptibility to tuberculosis // Calcif. Tissue. Int. – 2000. – Vol. 66(6). – P. 476-478.
-
Chensue S. W., Davey V. P., Remick D. G., Kunkel S. L. Release of interleukin-1 by peripheral blood mononuclear cells in patiens with tuberculosis and active inflammation // Infect. Immun. – 1986. – Vol. 52, № 1. – P. 341-343.
-
Comstock G. W. Tuberculosis in twins: a reanalysis of the Prophit study // Am. Rew. Respir. Dis. – 1978. – Vol. 117. – P. 621-624.
-
Cooper A. M., Kipnis A., Turner J. et al. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present // J. Immun. – 2002. – Vol. 168. – P. 1322-1327.
-
Cooper A. M., Magram J., Ferrante J., Orme I. M. Interleukin 12 (IL-12) Is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis // J. Exp. Med. - 1997. - Vol. 186(1). - P. 39-45.
-
Davies P. D., Brown R. C., Woodhead J. S. Serum concentrations of vitamin D metabolites in untreated tuberculosis // Throax. – 1985. – Vol. 40. – P. 187-190.
-
Denis M. Killing of Mycobacterium tuberculosis within human monocytes: activation by cytokines and cacitriol // Clin. Exp. Immunol. – 1991. – Vol. 84. – P. 200-206.
-
Dorman S. E., Holland S. M. Interferon-γ and interleukin-12 pathway defects and human disease // Cytokine Growth Factor Rev. - 2000. - Vol. 11. - P. 321-333.
-
Edwards J. H. Familial predisposition in man // Brit. Med. Bull. – 1969. – V. 25. – P. 58-64.
-
Falconer D. S. The inheritance of liability to certain diseases, estimated from the incidence among relatives // Ann. Hum. Genet. – 1965. – V. 29. – P. 51-76.
-
Fine P. E. M. Immunogenetics of susceptibility to leprosy, tuberculosis and leishmaniasis: An epidemiological perspective // Int. J. Leprosy. – 1981. – Vol. 49. – P. 437-454.
-
Flynn J. L., Goldstein M. M., Triebold K. J. et al. IL-12 increasis resistance of BALB/c mice to mucobacterium tuberculosis infection // J. Immunol. – 1995. – Vol. 155. – P. 2515-2524.
-
Flynn J. L., Chan J., Triebold K. J. et al. An essential role for interferon gamma in resistance to mucobacterium tuberculosis infection // J. Exp. Med. – 1993. – Vol. 178. – P. 2249-2254.
-
Forget A., Skamene B., Gros P. et al. Differences in response among inbred strains of mtce to infection with small doses of mycobacterium bovis (BCG) // Infect. Immun. – 1981. – Vol. 32. – P. 42-50.
-
Gao P. S., Fujishima S., Mao X.-Q. et al. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations // Clin. Genet. - 2000. – Vol. 58. – P. 74-76.
-
Giovine F. S., Takhsh E., Blakemore A. I. F., Duff G. W. Single base polymorphism at-511 in the human interleykin-1β gene // Hum. Mol. Genet. – 1993. – Vol. 1. – P. 450.
-
Golli V., Ghitulescu I., Ionescu N. et al. Clinical and epidemiological significance of isolated culture Koch bacillus after conclusion of chemotherapy // Pneumoftiziol. – 1981. – Vol. 30, №1. – Р. 55-58.
-
Govoni G., Gros P. Macrophage NRAMP1 and its role in resistanse to microbial infections // Inflam. Res. – 1998. – Vol. 47, №7. – P. 277-284.
-
Govoni G., Vidal S., Gauthier S. et al. The Bcg/Ity/Lsh Locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1Gly169 allele // Infect. Immun. – 1996. – Vol. 64. – P. 2923-2929.
-
Greenwood C. M. T., Fujiwara T. M., Boothroyd L. J. et al. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, large aboriginal canadian family // Am. J. Hum. Genet. – 2000. – Vol. 67. – P. 405-416.
-
Griffin M. D., Xing N., Kumar R. Vitamin D and its analogs as regulators of immune activation and antigen presentation // Annu. Rev. Nutr. – 2003. – Vol. 23. – P. 117-145.
-
Gros P., Skamene E., Forget A. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice // J. Immunol. – 1981. – Vol. 127, №6. – P. 2417-2421.
-
Gruenheid S., Gros P. Genetics susceptibility to intracellular infections: Nramp1, macrofage function and divalent cations transport // Curr. Opin. Microbiol. – 2000. – Vol. 3. – P. 43-48.
-
Gruenheid S., Pinner E., Desjardins M., Gros P. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome // J. Exp. Med. – 1997. – Vol. 185. – P. 717-730.
-
Hall M. A., McGlinn E., Coakley G. et al. Genetic polymorphism of IL-12 p40 gene in immunemediated disease // Genes and Immunity. – 2000. – Vol. 1. – P. 219-224.
-
Hara H., Matsushima T., Soejima R. et al. A tuberculosis epidemic. An outbreak of cases in a furniture company // Kekkaku. - 1982. – Vol. 57, №9. – P. 491-496.
-
Hill A. V. S. Genetics and genomics of infectious disease susceptibility // Brit. Med. Bull. – 1999. – Vol. 55, №2. – P. 401-413.
-
Hill A. V. S. The immunogenetics of human infectious disease // Annu. Rev. Immunol. – 1998. – Vol. 16. – P. 593-617.
-
Hill W. G. Estimation of linkage disequilibrium in random mating populations // Hereditary. – 1974. – Vol. 33. – P. 229-479.
-
Jabado N., Jankowski A., Dougaparsad S. et al. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (NRAMP1) functions as a pH-dependent manganese transporter at the phagosomal membrane // J. Exp. Med. – 2000. – Vol. 192, № 9. – P. 1237-1247.
-
Jackett P. S., Aber V. R., Lowrie D. B. Virulence of Mycobacterium tuberculosis and susceptibility to peroxidative killing systems // J. Gen. Microbiol. – 1978. – Vol. 107(2). – P. 273-278.
-
Kallman F. J., Reisner D. Twin studies on the significance of genetic factors in tuberculosis // Am. Rev. Tuberc. – 1942. – Vol. 47. – P. 549-574.
-
Kameda K., Kuchii N., Horii F. et al. A study on the family contacts examination of tuberculosis patients // Kekkaku. – 1983. – Vol. 58, №1. – P. 33-37.
-
Kindler V., Sppino A. P., Grau G. E. et al. The inducing role of tumor necrosis factor in the daveloptment of bactericidal granulomas during BCG infection // Cell. – 1989. – Vol. 56. – P. 731-740.
-
Knight J. C., Kwiatkowski D. Inherited variability of tumor necrosis factor production and susceptibility to infectious disease // Proc. Assoc. Am. Physicians. – 1999. – Vol. 111. – № 4. – P. 290-298.
-
Kramnik I., Dietrich W. F., Demant P., Bloom B. R. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis // Proc. Natl. Acad. Sci. USA. – 2000. – Vol. 97(15). – P. 8560-8565.
-
Labuda M., Ross M. V., Fujiwara T. M. et al. Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12q.II // Cytogenet. Cell Genet. – 1991. - Vol. 58. – P. 1978.
-
Lahiri D. K., Bye S., Nunberg J. I. et al. Anon-organic and non-enzymatic eztraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods used // J. Biochem. Biophys. Methods. – 1992. – Vol. 25. – P. 193-205.
-
Liu J., Fujiwara T. M., Buu N. T. et al. Identification of polymorphisms and sequence variants in the human homologue of the mouse natural resistance – associated macrophage protein gene // Am. J. Hum. Genet. – 1995. – Vol. 56. – P. 845-853.
-
Liu W., Cao W. C., Zhang C. Y. et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study // Int. J. Tuberc. Lung Dis. – 2004. – Vol. 8(4). – P. 428-434.
-
Lurie M. B., Zappasodi P., Dannenberg A. M., Weiss G. H. On the mechanism of genetic resistance to tuberculosis and its mode of inheritance // Am. J. Hum. Genet. – 1952. – Vol. 4. – P. 302-314.
-
Lynch C. J., Pierce-Chase C. H., Dubos R. A genetic study of susceptibility to experimental tuberculosis in mice infected with mammalian tubercle bacilli // J. Exp. Med. – 1965. – Vol. 121. – P. 1051-1070.
-
Malo D., Vogan K., Vidal S. et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites // Genomics. – 1994. – Vol. 23. – P. 51-61.
-
Marquet S., Lepage P., Hudson T. J. et al. Complete nucleotide sequence and genomic structure of the human NRAMP1 gene region on chromosome region 2q35 // Mamm. Genome. – 2000. – Vol. 11. – P. 755-762.
-
Mohan V. P., Scanga C. A., Yu K. Effects of Tumor Necrosis Factor alpha on host immune respons in chronic persistent tuberculosis: possible role for limiting Pathology // Infect. Immun. – 2001. - № 3. – P. 1847-1855.
-
Myrvik Q., Leake E. Wright M. Disruption of fhagosomal membranes of normal alveolar macrophages by the H37Rv strain of M. tuberculosis. A correlate of virulence // Am. Rev. Resp. Dis.— 1984. — Vol.129. – P.322-328.
-
Nei M. Molecular population genetics and evolution. – New York, Amsterdam: North-Holland publishing companu, Oxford American Elsevier publishing company, 1975. – 288 p.р.
-
Nelson N. Metal ion transporters and homeostasis // EMBO J. – 1999. – Vol. 18. – P. 4361-4371.
-
Nicklin M. J. H., Weith A., Duff G. W. A physical map of the region encompassing the human interleykin-1-alpha, interleykin-1-beta, and interleykin-1 receptor antagonist genes // Genomics. – 1994. – Vol. 19. – P. 382-384.
-
Noben-Trauth N., Schweitzer P. A., Johnson K. R. et al. The interleukin-12 beta subunit (p40) maps to mouse chromosome 11 // Mamm. Genome. – 1996. – Vol. 7. – P 392.
-
North R. J., Medina E. How important is Nramp1 in tuberculosis? // Trends Microbiol. – 1998. – Vol. 6, №11. – P. 441-443.
-
Oppmann B., Lesley R., Blom B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activites similar as distinct from IL-12 // Immunity. – 2000. – Vol. 13. - P. 715-725.
-
Orme I. M., Cooper A. M. Cytokine / chemokine cascades in immunity to tuberculosis // Immunol. Today. – 1999. – Vol. 20. – P. 307-311.
-
Ottenhoff T. H. M., Verreck F. A. W., Lichtenauer-Kaligis E. G. R. et al. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae // Nature Genetics. – 2002. - Vol. 32. – P. 97-104.
-
Patterson D., Jones C., Hart I. et al. The human interleukin-1 receptor antagonist (IL1RN) gene is located in the chromosome 2q14 region // Genomics. – 1993. – Vol. 15. – P. 173-176.
-
Pearce N. What does the odds ratio estimate in a case-control study? // Int. J. Epidemiol. – 1993. – Vol. 26 № 6. – P. 1189-1192.
-
Pоciot F., Molving J., Wogensen L. et al. A TaqI polymorphism in the human interleykin-1 beta (IL-1 beta) gene correlates with IL-1 beta sacretion in vitro // Eur. J. Clin. Invest. – 1992. – Vol. 22. – P. 396-402.
-
Rigby W. F. The immunobiology of vitamin D // Immunol. Today. – 1988. – Vol. 9. – P. 54-58.
-
Rook G. Role of activated macrophages in the immunopathology of tuberculosis // Brit. Med. Bull.— 1988.— Vol.44, №3.— P.611—623.
-
Rook G., Steele J., Fraher L. et al. Vitamin D3, gamma interferon, and control of mucobacterium tuberculosis by human monocytes // Immunology. – 1986. – Vol. 57. – P. 159-163.
-
Roth D. E., Soto G., Arenas F. et al. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis // J. Infect. Dis. – 2004. – Vol. 190(5). – P.920-927.
-
Ryu S., Park Y. K., Bai G. H. et al. 3’UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans // Int. J. Tuberc. Lung Dis. – 2000. – Vol. 4, № 6. – P. 577-580.
-
Schlesinger L. S. Entry of Mycobacterium tuberculosis into mononuclear phagocytes // Curr. Top. Mycrobiol. Immunol. – 1996. – Vol. 215. – P. 71-96.
-
Schlesinger L. S. Role of mononuclear phagocytes in M. tuberculosis pathogenesis // J. Invest. Med. – 1996. – Vol. 44. – P. 312-323.
-
Selvaraj P., Kurian S. M., Uma H. et al. Influence of non-MHC genes on lymphocyte response to Mycobacterium tuberculosis antigens and tuberculin reactive status in pulmonary tuberculosis // Indian J. Med. Res. – 2000. – Vol. 112. – P. 86-92.
-
Servaraj P., Narayanan P. R., Reetha A. M. Association of vitamin D receptor genotypes with the susceptibility to pulmonary tuberculosis in femele patients and resistance contacts // Indian J. Med. Res. – 2000. – Vol. 111. – P. 172-179.
-
Sevaraj P., Narayanan P. R., Reetha A. M. Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India // Tuberc. Lung. Dis. – 1999. – Vol. 79. – P. 221-227.
-
Sieburth D., Fabs E. W., Warrington J. A. et al. Assignment of NKSF/IL-12, a unique cytokine composed of two unrelated subunits, to chromosomes 3 and 5 // Genomics. – 1992. – Vol. 14. – P. 59-62.
-
Skamene E., Kongshavn P. A. L., Landy M. Genetic control of natural resistance to infection and malignancy – New York: Academic Press.,1980. – 280 p.р.
-
Skamene E. The Bcg gene story // Immunobiology. – 1994. – Vol. 191. – P. 451-460.
-
Soborg C., Andersen A. B., Madsen H. O. et al. Natural resistance-associated macrophage protein 1 are associated with microscopy-positive tuberculosis // J. Infect. Dis. – 2002. – Vol. 186 - № 4. – P. 517-521.
-
Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) // Am. J. Hum. Genet. – 1993. – Vol. 52. – P. 506-516.
-
Spielman R. S., Ewens W. J. The TDT and other family-based tests for linkage disequilibrium and association // Am. J. Hum. Genet. – 1996. – V. 59. – P. 983-989.
-
Stead W. W. Genetics and resistance to tuberculosis: could resistance be enhanced by genetics engineering? // Ann. Int. Med. – 1992. – Vol. 116. – P. 937-941.
-
Stead W. W., Senner J. W., Reddick W. T., Lofgren J. P. Racial differences in susceptibility to infection by Mycobacterium tuberculosis // N. Engl. J. Med. – 1990. – Vol. 322. – P.422-427.
-
Tarlow J. K., Blakemore I. F., Lennard A. et al. Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numer of an 860-bp tandem repeat // Hum. Genet. – 1993. – Vol. 91. – P. 403-404.
-
Uitterlinden A. G., Fang Y., Meurs J. B. et al. Genetics and biology of vitamin D receptor polymorphisms // Gene. – 2004. – Vol. 338(2). – P. 143-156.
-
Vidal S. M., Malo D., Vogan K. et al. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg // Cell. – 1993. – Vol. 73, №3. – P. 469-485.
-
Walker L., Lowrie D. B. Killing of Mycobacterium microti by immunologically activated macrophages // Nature. – 1981. – Vol. 293. – P. 69-71.
-
Warrington J. A., Bailey S. K., Armstrong E. et al. A radiation hybrid map of 18 growth factor, growth factor receptor, hormone receptor, or neurotransmitter receptor genes on the distal region of the long arm of chromosome 5 // Genomics. – 1992. – Vol. 13. – P. 803-808.
-
Warrington J. A., Bengtsson U. High-resolution physical mapping of human 5q31-q33 using three methods: radiation hybrid mapping, interphase fiuorescence in situ hybridization, and pulsed-field gel electrophoresis // Genomics. – 1994. – Vol. 24. – P. 395-398.
-
Wilkinson R. J., Lieweiyn M., Toossi Z. et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study // Lancet. – 2000. – Vol. 355. – P. 618-621.
-
Wilkinson R. J., Patel P., Llewelyn M. et al. Influence of Polymorphism in the Genes for the Interleukin (IL)-1 Receptor Antagonist and IL-1β on Tuberculosis // J. Exp. Med. – 1999. – Vol. 189 (12). – P. 1863-1873.
-
Yang Y. S., Kim S. J., Kim J. W., Koh E. M. NRAMP1 gene polymorphisms in patients with rheumatoid arthritis in Koreans // J. Korean Med. Sci. – 2000. - № 15. – P. 83-87.
-
Zaahl M. G., Robson K. J. H., Warnich L. et al. Expression of SLC11A1 (NRAMP1) 5’-(GT)n repeat: Opposite effect in the presence of - 237C → T // Blood Cells, Molecules, and Diseases. – 2004. – Vol. 33. – P. 45-50.















