86388 (589974), страница 2
Текст из файла (страница 2)
Не всяке рівняння f(x) = g(x) або нерівність у результаті перетворень або за допомогою вдалої заміни змінної може бути зведене до рівняння або нерівності того або іншого стандартного виду, для якого існує певний алгоритм рішення. У таких випадках іноді виявляється корисним використовувати деякі властивості функцій, такі як монотонність, періодичність, обмеженість, парність і ін.
2.1 Використання монотонності функції
Функція f (x) називається зростаючої на проміжку D, якщо для будь-яких чисел x1 і x2 із проміжку D таких, що x1 < x2, виконується нерівність f (x1) < f (x2).
Функція f (x) називається убутної на проміжку D, якщо для будь-яких чисел x1 і x2 із проміжку D таких, що x1 < x2, виконується нерівність f (x1) > f (x2).
На показаному на малюнку 1 графіку
Малюнок 1
Функція y = f (x), , зростає на кожному із проміжків [a; x1) і (x2; b] і убуває на проміжку (x1; x2). Зверніть увагу, що функція зростає на кожному із проміжків [a; x1) і (x2; b], але не на об'єднанні проміжків
Якщо функція зростає або убуває на деякому проміжку, то вона називається монотонної на цьому проміжку.
Помітимо, що якщо f – монотонна функція на проміжку D (f (x)), те рівняння f (x) = const не може мати більше одного кореня на цьому проміжку.
Дійсно, якщо x1 < x2 – корінь цього рівняння на проміжку D (f(x)), те f (x1) = f (x2) = 0, що суперечить умові монотонності.
Перелічимо властивості монотонних функцій (передбачається, що всі функції визначені на деякому проміжку D).
Сума декількох зростаючих функцій є зростаючою функцією.
Добуток ненегативних зростаючих функцій є зростаюча функція.
Якщо функція f зростає, то функції cf (c > 0) і f + c також зростають, а функція cf (c < 0) убуває. Тут c - деяка константа.
Якщо функція f зростає й зберігає знак, то функція убуває.
Якщо функція f зростає й ненегативна, то fn де n N, також зростає.
Якщо функція f зростає й n – непарне число, то f n також зростає.
Композиція g (f (x)) зростаючих функцій f і g також зростає.
Аналогічні твердження можна сформулювати й для убутної функції.
Крапка a називається крапкою максимуму функції f, якщо існує така ε-околиця крапки a, що для будь-якого x із цієї околиці виконується нерівність f (a) ≥ f (x).
Крапка a називається крапкою мінімуму функції f, якщо існує така ε-околиця крапки a, що для будь-якого x із цієї околиці виконується нерівність f (a) ≤ f (x).
Крапки, у яких досягається максимум або мінімум функції, називаються крапками екстремуму.
У крапці екстремуму відбувається зміна характеру монотонності функції. Так, ліворуч від крапки екстремуму функція може зростати, а праворуч - убувати. Відповідно до визначення, крапка екстремуму повинна бути внутрішньою крапкою області визначення.
Якщо для кожного (x ≠ a) виконується нерівність f (x) ≤ f (a)
, те крапка a називається крапкою найбільшого значення функції на множині D:
Якщо для кожного (x ≠ b) виконується нерівність f (x) > f (b)
, те крапка b називається крапкою найменшого значення функції на множині D.
Крапка найбільшого або найменшого значення функції на множині D може бути екстремумом функції, але не обов'язково їм є.
Крапку найбільшого (найменшого) значення безперервної на відрізку функції варто шукати серед екстремумів цієї функції і її значень на кінцях відрізка.
Рішення рівнянь і нерівностей з використанням властивості монотонності ґрунтується на наступних твердженнях.
1. Нехай f(х) - безперервна й строго монотонна функція на проміжку Т , тоді рівняння f(x) = З, де З - дана константа, може мати не більше одного рішення на проміжку Т.
2. Нехай f(x) і g(х) - безперервні на проміжку T функції, f(x) строго зростає, а g(х) строго убуває на цьому проміжку, тоді рівняння f(х) = =g(х) може мати не більше одного рішення на проміжку Т. Відзначимо, що як проміжок T можуть бути нескінченний проміжок (-?;+?) , проміжки (а;+?), (-?; а), [а;+?), (-?; b], відрізки, інтервали й напівінтервали.
Приклад 2.1.1 Вирішите рівняння
. [28] (1)
Рішення. Очевидно, що х ≤ 0 не може бути рішенням даного рівняння, тому що тоді . Для х > 0 функція
безперервна й строго зростає, як добуток двох безперервних позитивних строго зростаючих для цих х функцій f(x) = х і
. Виходить, в області х > 0 функція
приймає кожне своє значення рівно в одній крапці. Легко бачити, що х = 1 є рішенням даного рівняння, отже, це його єдине рішення.
Відповідь: {1}.
Приклад 2.1.2 Вирішите нерівність
. (2)
Рішення. Кожна з функцій в = 2x, в = 3x, в = 4х безперервна й строго зростаюча на всій осі. Виходить, такий же є й вихідна функція . Легко бачити, що при х = 0 функція
приймає значення 3. У силу безперервності й строгої монотонності цієї функції при х > 0 маємо
, при х < 0 маємо
. Отже, рішеннями даної нерівності є всі х < 0.
Відповідь: (-?; 0).
Приклад 2.1.3 Вирішите рівняння
. (3)
Рішення. Область припустимих значень рівняння (3) є проміжок . На ОПЗ функції
й
безперервні й строго убувають, отже, безперервна й убуває функція
. Тому кожне своє значення функція h(x) приймає тільки в одній крапці. Тому що ,
те х = 2 є єдиним коренем вихідного рівняння.
Відповідь: {2}.
2.2 Використання обмеженості функції
При рішенні рівнянь і нерівностей властивість обмеженості знизу або зверху функції на деякій множині часто відіграє визначальну роль.
Якщо існує число C таке, що для кожного виконується нерівність f (x) ≤ C, те функція f називається обмеженої зверху на множині D (малюнок 2).
Малюнок 2
Якщо існує число c таке, що для кожного виконується нерівність f (x) ≥ c, те функція f називається обмеженої знизу на множині D (малюнок 3).
Малюнок 3
Функція, обмежена й зверху, і знизу, називається обмеженої на множині D. Геометрично обмеженість функції f на множині D означає, що графік функції y = f (x), лежить у смузі c ≤ y ≤ C (малюнок 4).
Малюнок 4
Якщо функція не є обмеженою на множині, то говорять, що вона не обмежена.
Прикладом функції, обмеженої знизу на всій числовій осі, є функція y = x2. Прикладом функції, обмеженої зверху на множині (–∞; 0) є функція y = 1/x. Прикладом функції, обмеженої на всій числовій осі, є функція y = sin x.
Приклад 2.2.1 Вирішите рівняння
sin(x3 + 2х2 + 1) = х2 + 2х + 2. (4)
Рішення. Для будь-якого дійсного числа х маємо sin(x3 + 2х2 + 1) ≤ 1, х2 + 2х + 2 = (x + 1)2 + 1 ≥ 1. Оскільки для будь-якого значення х ліва частина рівняння не перевершує одиниці, а права частина завжди не менше одиниці, то дане рівняння може мати рішення тільки при .
При
,
, тобто при
рівняння (4) так само корінь не має .
Відповідь: O.
Приклад 2.2.2 Вирішите рівняння
. (5)
Рішення. Очевидно, що х = 0, х = 1, х = -1 є рішеннями даного рівняння. Для знаходження інших рішень у силу непарності функції f(х) = = x3 - x - sin πx досить знайти його рішення в області х > 0, х ≠ 1, оскільки якщо x0 > 0 є його рішенням, те й (-x0) також є його рішенням.
Розіб'ємо множину х > 0, х ? 1, на два проміжки: (0; 1) і (1; +?)
Перепишемо початкове рівняння у вигляді x3 - x = sin πx. На проміжку (0; 1) функція g(х) = x3 - x приймає тільки негативні значення, оскільки х3 < < х, а функція h(x) = sin πx тільки позитивні. Отже, на цьому проміжку рівняння не має рішень.
Нехай х належить проміжку (1; +∞). Для кожного з таких значень х функція g(х) = х3 - х приймає позитивні значення, функція h(x) = sin πx приймає значення різних знаків, причому на проміжку (1; 2] функція h(x) = sin ?x непозитивна. Отже, на проміжку (1; 2] рівняння рішень не має.
Якщо ж х > 2, то |sin πx| ≤ 1, x3 - x = x(x2 - 1) > 2∙ 3 = 6, а це означає, що й на проміжку (1; +∞) рівняння також не має рішень.
Отже, x = 0, x = 1 і x = -1 і тільки вони є рішеннями вихідного рівняння.
Відповідь: {-1; 0; 1}.
Приклад 2.2.3 Вирішите нерівність
. (6)
Рішення. ОПЗ нерівності є всі дійсні x, крім x = -1. Розіб'ємо ОПЗ нерівності на три множини: -? < x < -1, -1 < x ? 0, 0 < x < +? і розглянемо нерівність на кожному із цих проміжків.
Нехай -∞ < x < -1. Для кожного із цих x маємо g(x) = < 0, а f(x) = 2x > 0. Отже, всі ці x є рішеннями нерівності.
Нехай -1 < x ≤ 0. Для кожного із цих x маємо g(x) = 1 - , а f(x) = 2x ≤ 1. Отже, жодне із цих x не є рішенням даної нерівності.
Нехай 0 < x < +∞. Для кожного із цих x маємо g(x) = 1 - , a
. Отже, всі ці x є рішеннями вихідної нерівності.
Відповідь: .
2.3 Використання періодичності функції
Функція f (x) називається періодичної з періодом T ≠ 0, якщо виконуються дві умови:
якщо , то x + T і x – T також належать області визначення D (f (x));
для кожного виконана рівність
f (x + T) = f (x).
Оскільки те з наведеного визначення треба, що
Якщо T – період функції f (x), то очевидно, що кожне число nT, де , n ≠ 0, також є періодом цієї функції.
Найменшим позитивним періодом функції називається найменше з позитивних чисел T, що є періодом даної функції.
Графік періодичної функції
Графік періодичної функції звичайно будують на проміжку [x0; x0 + T), а потім повторюють на всю область визначення.
Гарним прикладом періодичних функцій можуть служити тригонометричні функції y = sin x, y = cos x (період цих функцій дорівнює 2π), y = tg x (період дорівнює π) і інші. Функція y = const також є періодичною. Для неї періодом є будь-яке число T ≠ 0.
На закінчення відзначимо властивості періодичних функцій. [19]
Якщо f (x) – періодична функція з періодом T, то функція
g (x) = A · f (kx + b)
де k ≠ 0 також є періодичною з періодом .
Нехай функції f1 (x) і f2 (x) визначені на всій числовій осі і є періодичними з періодами T1 > 0 і T2 > 0. Тоді якщо те функція
періодична з періодом T, рівним найменшому загальному кратному чисел T1 і T2.
Приклад 2.4.1 Функція періодична з періодом T = 5. Відомо, що
. Знайдіть
Рішення. Перетворимо окремо кожний доданок:
Тоді
Відповідь: 2.
Приклад 2.4.2 [24] Знайдіть період функції
Рішення. Перетворимо дане вираження:
має період
;
має період
.
Тоді функція має період
Відповідь: ?.
Приклад 2.4.3 Нехай - періодична функція з періодом 3 така, що
;
.
Вирішите рівняння:
(7)
Графік функції на множині [0;3) зображений на малюнку 3:
x
y
Малюнок 5
Таким чином 3 - період функції , те
, тоді рівняння (7) прикмет вид
, розглянемо два випадки.
1) нехай , тобто
, тоді рівняння прийме вид:
, значить
і виходить
,
2) нехай те
, тоді
рівняння прийме вид:
; отже
,
таким чином ,
.
Відповідь: .
2.4 Використання парності функції
Функція f (x) називається парної, якщо для кожного виконуються рівності:
1) ,
2) f (–x) = f (x).
Графік парної функції на всій області визначення симетричний щодо осі OY. Прикладами парних функцій можуть служити y = cos x, y = |x|, y = x2 + |x|
Графік парної функції
Функція f (x) називається непарної, якщо для кожного виконуються рівності:
1) ,
2) f (–x) = –f (x).
Іншими словами функція називається непарної, якщо її графік на всій області визначення симетричні відносно початку координат. Прикладами непарних функцій є y = sin x, y = x3.
Графік непарної функції
Не слід думати, що будь-яка функція є або парної, або непарної. Так, функція не є ні парної, ні непарної, тому що її область визначення
несиметрична відносно початку координат. Область визначення функції y = x3 + 1 охоплює всю числову вісь і тому симетрично відносно початку координат, однак f (–1) ≠ f (1). А це значить, що функція не є ні парної, ні непарної, тобто є функцією загального виду (ФЗВ).
Якщо область визначення функції симетрична відносно початки координат, то цю функцію можна представити у вигляді суми парної й непарної функцій.
Такою сумою є функція
Перший доданок є парною функцією, друге - непарної.
Порівняльна ілюстрація функцій різної парності зображена на малюнку 6
ФОВ
Малюнок 6
Дослідження функцій на парність полегшується наступними твердженнями.
Сума парних (непарних) функцій є парною (непарної) функцією.
Добуток двох парних або двох непарних функцій є парною функцією.
Добуток парної й непарної функції є непарною функцією.