86229 (589952), страница 7

Файл №589952 86229 (Формування математичних понять в процесі викладання математики в основній школі) 7 страница86229 (589952) страница 72016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Розглянемо ще приклад. Кут — це фігура, яка складається з двох різного проміння з обший початковою крапкою. Родовим найближчим об'єктом буде фігура; видові відмінності: два промені і загальний початок біля цього проміння.

Операції, що розкривають дію визначення об'єктів, будуть наступні: вибирається найближчий родовий об'єкт (фігура), потім на цей об'єкт накладаються як би обмеження, видові характеристики (відмінності). На основі видових характеристик більше властивостей. Ось цьому об'єкту з великим числом . властивостей і меншим об'ємом привласнюється нова назва (термін). Так, зі всієї рівності рівнянням назвемо тільки таку рівність, в записі якої є змінні (букви). Зі всіх рівнянь квадратними назвемо такі, які мають вигляд ах2+bx+с = 0, де х — змінна; а, b і с — деякі числа, причому а≠0. Зі всіх прямокутників квадратом назвемо такі прямокутники, біля яких суміжні сторони рівні, і т.п.

При виділенні видів визначень математичних об'єктів часто ось ця загальна дія — визначення об'єктів — називають конкретним видом «визначення через найближчий рід і видові відмінності». Нам представляється більш правомірним вести мову про специфіку дій по виділенню видових відмінностей і залежно від цього розрізняють означення і називати їх визначеннями об'єктів конкретного вигляду.

Відповідно до цього можна назвати наступні види визначень математичних об'єктів залежно від специфіки дій, за допомогою яких виділяють родові об'єкти і видові відмінності. Інакше можна ще сказати, що визначення через найближчий рід і видові відмінності мають наступну конкретизацію:

1) визначення об'єктів шляхом вказівки їх характеристичної властивості;

2) негативні визначення. І окремо слід назвати неявні визначення основних (початкових) об'єктів (фігур) предмету через систему аксіом;

3) конструктивні і рекурсивні визначення.

Визначення математичних об'єктів шляхом опису характеристичної властивості. Цей вид визначень побудований на логічних діях і операціях встановлення найближчого роду, видових відмінностей і логічної природи зв'язку між родом і видовими відмінностями. Залежно від логічної природи зв'язку властивостей в шкільному курсі математики розрізняють коньюнктивні і диз'юнктивні визначення.

Розглянемо, наприклад, визначення паралелограма.

Паралелограмом називається чотирикутник, біля якого протилежні сторони паралелі.

Термін — паралелограм.

Рід — чотирикутник.

Видові відмінності: 1) одна пара протилежних сторін паралель;

2) інша пара протилежних сторін паралель.

Всі властивості у визначенні сполучені союзом «и»; значить, маємо конъюнктивне визначення.

Інший приклад — визначення неправильного дробу.

Дріб, в якому чисельник більше знаменника або рівний йому, називається неправильним дробом.

Термін — неправильний дріб.

Рід — дріб.

Видові відмінності: 1) чисельник більше знаменника; 2) чисельник рівний знаменнику.

Видові відмінності сполучені союзом «або». Визначення диз'юнктивне.

Конструктивні і рекурсивні визначення. Властивості об'єкту в такому визначенні розкриваються шляхом показу операцій його конструювання, тобто його видові відмінності задані у вигляді дій.

Приклад 1. Поворотом біля даної крапки називається такий рух, при якому кожний промінь, витікаючий з цієї крапки, повертається на один і той же кут в одному напрямку.

Термін — поворот.

Рід — рух.

Видові відмінності: 1) кожний промінь, витікаючий з крапки, повернути в одному і тому ж напрямі; 2) кожний промінь повернути на один і той же кут.

Конструктивні дії можуть задаватися різно.

Так, в рекурсивних визначеннях указуються деякі базисні об'єкти деякого класу і правила, що дозволяють одержати нові об'єкти цього ж класу.

Дії отримання подальшого члена, якщо відомий попередній, вказані у видових відмінностях.

Негативні визначення. Негативні визначення не задають властивості об'єкту. Вони виконують як би класифікаційну функцію. Якщо клас об'єктів розбитий на групи (множини) і об'єктам однієї групи, що володіють певними властивостями, привласнений термін і є об'єкти, які належать цьому класу, але на наголошених властивостях (всіма або частиною) не володіють, те такий об'єктам дається негативне означення.

Приклад. Прямі, що схрещуються, — це такі прямі, які не належать площині і не перетинаються.

Термін — прямі, що схрещуються.

Рід — прямі.

Видові відмінності: 1) не належать одній площині; 2) не перетинаються.

Таким чином, логічна дія — визначення об'єкту — скрізь однаково, не змістовні (математичні) дії в кожному з на наголошених видах визначень різні. В одних видові відмінності перераховуються як описові характеристики (бути паралельними, бути більше і т. п.); в інших указуються дії, які треба провести, щоб одержати (сконструювати) об’єкт; в третіх перераховуються властивості, які заперечуються.

Таким чином, головне в типології шкільних визначень по видах — це розуміння специфіки дій, що розкривають (характеризуючи) видові відмінності.

Основною учбовою задачею при навчанні визначенням математичних об'єктів буде формування логічної дії по розкриттю структури визначення математичних об'єктів і дій, адекватних конкретному виду визначень.

Дії, за допомогою яких розв'язуватиметься основна учбова задача, наступні:

  • логічний аналіз структури визначень різного вигляду (виділення логічної і змістовної функцій кожного слова у визначенні об'єкту, відшукання зайвих слів у визначеннях і ін.);

  • підведення конкретного математичного об'єкту під визначення;

  • приведення конкретного прикладу, об'єкту, що ілюструє приналежність його даному визначенню;

  • заміна визначення об'єкту еквівалентним визначенням цього об'єкту. Іноді цю дію називають переформулювання визначення. Порівняння різних визначень одного і того ж об'єкту;

  • отримання слідств з факту, що об'єкт належить до класу об'єктів, охарактеризованих визначенням;

  • знаходження логічних і змістовних помилок в приведених визначеннях.

При з'єднанні видових відмінностей коньюктивно для приналежності конкретного об'єкту до класу певних об'єктів необхідне дотримання (наявність біля прикладу) всіх властивостей одночасно.

Для приналежності конкретного об'єкту до класу, заданого у визначенні, коли видові відмінності сполучені диз'юнктивний, необхідне дотримання (наявність) родової властивості і хоча б однієї з видових відмінностей.

2.2. Виконання дії підведення під поняття.

Умін­ня застосовувати поняття є показником його засвоєння. На думку Н.О.Менчинської, якщо учень справді засвоїв поняття, то він уміє його і застосовувати.

Одним із провідних принципів педагогічної психології є принцип єдності знань і дій. Проте існують два роди знань: знання про пред­мети і явища навколишнього світу (а отже, і про поняття) і знання про дії, які з ними потрібно виконувати. Недоліком традиційного і сучасного навчання математики є недостатня увага до знань другого роду.

Часто учні, які добре знають означення математичних понять, не вміють застосовувати їх до доведення теорем і розв'язування за­дач, зокрема прикладних. Тому дії, адекватні знанням, зокрема по­няттям, мають стати не тільки засобом, а й предметом засвоєння.

З погляду застосування понять важливу роль відіграють такі розумо­ві дії, як «підведення до поняття» («дія розпізнавання») та обернена їй дія — відшукання наслідків. Остання означає, що від факту належності об'єкта до поняття приходять до системи властивостей, які має цей об'єкт. Потрібна спеціальна система вправ на підведення об'єктів до по­няття. Для встановлення факту належності об'єкта до певного поняття потрібно перевірити наявність у об'єкта сукупності необхідних і достат­ніх властивостей. Якщо виявиться, що об'єкт не має хоча б однієї з іс­тотних властивостей, роблять висновок, що до даного поняття він не на­лежить. При цьому можна використовувати не тільки означення, а й теореми, що виражають властивості понять, які еквівалентні означенням у тому розумінні, що властивості понять, які стверджуються в них, мо­жуть бути покладені в основу означень.

Наприклад, для встановленні належності чотирикутника до паралелограмів можна скористатися озна­ченням паралелограма і теоремою про його ознаку. Разом вони є еквіва­лентними системами необхідних і достатніх властивостей.

Перелік операцій, що входять до складу дії підведення до поняття у випадку, коли істотні властивості пов'язані сполучником «і» чи сполучником «або», можна задати у вигляді такого навчального алго­ритму. Щоб визначити, чи належить х до поняття у, потрібно:

1) виокремити властивості у;

2) з'ясувати, якими сполучниками пов'язані ці властивості;

3) якщо: а) сполучником «і», то перевірити, чи має х всі властивості у. Якщо так, то х належить до поняття у; якщо ні, то х не належить до поняття у; б) сполучником «або», то перевірити, чи має х хоча б одну властивість у. Якщо так, то х належить до поняття у; якщо ні, то х не належить до поняття у.

Якщо означення поняття має змішану структуру, тобто містить сполуч­ник «і» та сполучник «або», то в алгоритмі потрібні додаткові вказівки.

Наведемо приклад. У курсі геометрії 7 класу учні ознайомлюються з означенням медіани трикутника. Доцільно ще на етапі введення озна­чення чітко виділити дві істотні властивості, які воно містить і які лише разом утворююгь необхідну і достатню властивість належності об'єкта до поняття «медіана»: 1) медіана — це відрізок; 2) цей відрізок з'єднує вершину трикутника із серединою протилежної сторони.

Щоб встановити, чи є АВ медіаною трикутника АВС, потрібно: 1) пригадати означення медіани; 2) переконатися, що істотні власти­вості в ньому пов'язані сполучником «і»; 3) перевірити, чи має АО обидві властивості медіани.

2.3. Виконання дії виведення наслідків

Перелік операцій, що є складовими дії «відшукання наслідків», можна задати у вигляді такого навчального алгоритму: 1) назвати всі істотні властивості, які входять в означення поняття; 2) назвати інші істотні властивості, які вивчалися.

Наприклад, результати відшукання наслідків з поняття «рівнобедрений трикутник» можна сформулювати так. Якщо трикутник рівнобедрений, то: 1) дві сторони його рівні; 2) кути при основі рівні; 3) бісектриса кута при вершині є медіаною, проведеною до основи; 4) бісектриса кута при вершині є висотою, проведеною до основи; 5) пряма, що містить згадану бісектрису кута при вершині, є віссю симетрії цього трикутника.

З метою забезпечення передумов для формування умінь застосовувати поняття та їхні властивості до розв'язування задач і доведення теорем, доцільно після вивчення кожного з основних понять і відношень звести разом їхні істотні властивості, що містяться в означеннях і теоремах.

До таких понять слід віднести насамперед основні геометричні фі­гури та їхні властивості, відношення рівності, паралельності, перпен­дикулярності, основні види рівнянь, нерівностей, функцій. У міру вивчення курсу виникають нові можливості щодо доведення відно­шень рівності, паралельності й перпендикулярності відрізків, подіб­ності фігур. Тому важливо сформулювати правила-орієнтири для до­ведення цих відношень.

Наприклад, щоб довести рівність двох відріз­ків, можна включити їх у трикутники і довести рівність цих трикут­ників або скористатися властивістю одного з рухів, або застосувати вектори, або довести, що ці відрізки є бічними сторонами рівнобедреного трикутника чи протилежними сторонами паралелограма (прямо­кутника, квадрата, ромба).

Основою застосування понять до розв'язування складніших задач і доведення теорем є прийом розумової діяльності, який дістав назву «ана­ліз через синтез», або переосмислення елементів задачі з погляду різних понять. У процесі застосування понять в учнів формується така важлива розу­мова дія, як конкретизація, оскільки використання знань у практичних ситуаціях пов'язане з переходом від абстрактного до конкретного. Дослі­дження педагогічної психології показують, що перехід від оперування абс­трактними поняттями до конкретної практичної ситуації досить складний для школярів.

З цього приводу Л. С. Виготський писав, що шлях від абс­трактного до конкретного виявляється тут не менш важким, ніж шлях сходження від конкретного до абстрактного. Багатьом учням складно одночасно виокремлювати абстрактні спів­відношення в конкретних даних і абстрагуватися від наочного сприй­мання об'єктів. Для запобігання таким труднощам потрібно викорис­товувати конкретні практичні ситуації ще в період формування абст­рактних понять — розв'язувати задачі практичного змісту. Особливо корисними є практичні роботи на місцевості, екскурсії на сільського­сподарські та промислові підприємства.

2.4. Абстрактно-дедуктивний та конкретно-індуктивний методи навчання

Відомі конкретно-індуктивний і абстрактно-дедуктив­ний підходи до формування понять та їх означень. При першому з них учні спочатку спостерігають і аналізують кон­кретні об'єкти (числа, фігури, задачі та ін.), потім відокрем­люють і перераховують їх істотні ознаки і, нарешті, синтезують поняття та формулюють його означення. Так, при формуванні понять «прості» і «складені» числа можна запро­понувати учням розглянути такі множини чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, ... 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24,

У чні визначають дільники чисел спочатку в першій мно­жині, а потім у другій; виявляють спільні і відмінні влас­тивості чисел обох рядів і означають поняття «просте число» і «складене число». При цьому слід звернути увагу на ті істотні ознаки, які узагальнюються і синтезуються в по­нятті.

Ці методи набули неабиякого поширення у навчанні математики. Вперше їх докладно проаналізував К.Ф.Лебединцев.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее