85930 (589902)
Текст из файла
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Положительные и ограниченные полукольца
Выполнил:
студент V курса математического факультета
Ворожцов Вячеслав Андреевич _____
Научный руководитель:
кандидат физико-математических наук, доцент кафедры алгебры и геометрии В.В. Чермных ________
Рецензент:
доктор физико-математических наук, профессор кафедры алгебры и геометрии Е.М. Вечтомов _______
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение 3
Глава 1. Основные понятия теории полуколец 4
1.1. Определение полукольца. Примеры. 4
1.2. Дистрибутивные решетки 5
1.3. Идеалы полуколец 6
Глава 2 Положительные и ограниченные полукольца. 7
2.1. Определение и примеры положительных и ограниченных полуколец 7
2.2. Основные свойства положительных и ограниченных полуколец 7
Библиографический список 16
Введение
Теория полуколец – это раздел современной алгебры, обобщающий как кольца, так и дистрибутивные решетки. Понятие полукольца возникло в 30-х годах прошлого столетия. Как самостоятельная теория полукольца начали изучаться в 50-е годы. Особенно интенсивно теория полуколец развивается последние 20 лет, что вызвано не только теоретическим интересом, но и многочисленными ее приложениями.
Целью данной работы является изучение классов положительных и ограниченных полуколец, рассмотрение основных свойств данных алгебраических объектов, часть из которых доказывается автором работы самостоятельно; приведены примеры полуколец.
Работа состоит из 2 глав. В первую главу вошли основные определения и факты, на которые опирается эта работа. Вторая – основная часть всей работы, в ней рассмотрены определения и свойства положительных и ограниченных полуколец, приведены примеры, доказаны некоторые теоремы.
Глава I. «Основные понятия теории полуколец».
1.1. Определение полукольца. Примеры.
Определение полукольца: Непустое множество S с бинарными операциями + и · называется полукольцом, если выполняются следующие аксиомы:
-
(S,+) – коммутативная полугруппа с нейтральным элементом 0;
-
Ассоциативность:
;
-
Коммутативность:
;
-
Существование нейтрального элемента:
.
-
(S,·) – полугруппа:
-
Ассоциативность:
;
-
Умножение дистрибутивно относительно сложения:
-
левая дистрибутивность:
а(в+с)=ав+ас;
-
правая дистрибутивность:
(а+в)с=ас+вс.
-
Мультипликативное свойство 0:
-
.
Эта аксиоматика появилась в 1934 году и ее автором является Вандовер.
Полукольцо S называется коммутативным, если операция в нем коммутативна:
.
Полукольцо S называется полукольцом с единицей, если в нем существует нейтральный элемент по умножению, который называется единицей (1):
Примеры полуколец:
-
<N,+,·>, где N – множество неотрицательных целых чисел с обычными операциями + и ·;
-
- тривиальное полукольцо;
-
Двухэлементные полукольца:<Z2 ,+,·>, (в В 1+1=1);
-
Множество матриц
с элементами из полукольца N и операциями + и
;
-
Множества N, Z, Q+, Q, R+, R и введенных на них различных комбинаций операций: обычные сложение и умножение, максимум
и минимум
двух чисел, НОД и НОК, когда они определены.
Полукольцо с импликацией
называется мультипликативно (аддитивно) сократимым.
Полукольцо, в котором выполняется равенство
, называется мультипликативно (аддитивно) идемпотентным.
1.2. Дистрибутивные решетки.
Пусть L – произвольное множество. Введем на L отношение положив,
.
Отношением порядка называется рефлексивное, транзитивное, антисимметричное бинарное отношение на множестве L, при этом множество L назовем частично упорядоченным множеством.
Отношение на множестве L является отношением порядка.
Пусть M – непустое подмножество частично упорядоченного множества L . Нижней гранью множества M называется такой элемент , что
для любого
. Нижняя грань m множества M называется точной нижней гранью, если
, где n – произвольная нижняя грань множества M. Двойственным образом определяется точная верхняя грань.
Частично упорядоченное множество L называется решеткой, если любые два элемента имеют точную верхнюю и точную нижнюю
грани; решетка называется дистрибутивной, если в ней выполняются дистрибутивные законы:
Кроме этого определения существует еще одно определение дистрибутивной решетки. Алгебраическая система L с двумя бинарными операциями сложения + и умножения ∙ называется решеткой, если (L, +) и (L,∙) являются идемпотентными коммутативными полугруппами и операции связаны законами поглощения
,
;
Решетка называется дистрибутивной, если для любых
, ограниченной, если она имеет 0 и 1.
1.3. Идеалы полуколец.
Непустое подмножество I полукольца S называется левым (правым) идеалом полукольца S, если для любых элементов a, b I, s
S элементы a+b и sa (as) принадлежат I.
Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом или просто идеалом полукольца. Идеал, отличный от полукольца S называется собственным. Наименьший из всех (левых) идеалов, содержащий элемент a S, называется главным (главным левым) идеалом, порожденным элементом a. Обозначается (a) или SaS, односторонние Sa и aS – левый и правый соответственно. Множество всех элементов принадлежащих главному идеалу можно записать так
.
Собственный идеал M полукольца S называется максимальным (максимальным правым) идеалом, если влечет M=A или A=S для каждого идеала A .
Примерами идеалов могут служить следующие подмножества:
1. {0} – нулевой идеал;
2. S – идеал, совпадающий со всем полукольцом;
3. Идеал на полукольце :
;
4. Главный идеал ограниченной дистрибутивной решетки L, порожденный элементом a: .
Глава II «Положительные и ограниченные полукольца».
2.1. Определение, примеры и основные свойства.
Полукольцо S с 1 называется положительным, если для любого элемента а S элемент а+1 обратим в S, т.е.
.
Примерами положительных полуколец служат следующие алгебраические системы:
-
ограниченные дистрибутивные решетки;
-
полукольца непрерывных R+ - значных функций;
-
множество всех идеалов полукольца, с операциями сложения и умножения.
Полукольцо S называется ограниченым, если для любого выполняется
. Ограниченное полукольцо – частный случай положительного полукольца.
Примеры ограниченных полуколец:
-
ограниченные дистрибутивные решетки;
-
множество всех идеалов полукольца, с операциями сложения и умножения.
2.1.Основные свойства положительных и ограниченных полуколец:
I. Для полукольца S следующие условия равносильны:
1. S – положительное полукольцо;
2. для любого максимального одностороннего идеала M в S и любых a и b S
(a+b M)
(a
M & b
M).
Доказательство:
1 2. Пусть
для произвольных
и максимального правого идеала M. Предположим, что
, тогда
и
для некоторых
и
. Имеем:
.
В левой части последнего равенства – элемент из M, тогда как в правой части обратимый справа элемент; противоречие.
2 1. Пусть выполнено 2 и с – произвольный элемент из S. Элемент 1+с не лежит ни в одном максимальном одностороннем идеале полукольца S (т.к. в противном случае в силу условия 2 в идеале должен лежать элемент 1, противоречие), значит, 1+с обратим.
II. В положительном полукольце S справедливы импликации:
Доказательство. Пусть . Поскольку S положительно, то для x+1 найдется некоторый
, такой что
. Тогда
,т.к.
. Получили y=1 и значит
.
Таким образом мы доказали, если положительное полукольцо мультипликативно идемпотентно, то оно ограниченно,
Теперь, пусть , тогда
,т.е. такое полукольцо еще и аддитивно идемпотентно.
Поскольку выполняется для
, то для x=1, также выполняется. Обратно, 1+1=1, помножим обе части на x и получим необходимое равенство.
III . Полукольцо S положительно тогда и только тогда, когда для любого элемента и любого обратимого элемента
элемент
обратим.
Доказательство.
Полукольцо положительно, следовательно, элемент
- обратим. Умножим обратимый элемент на обратимый, получим обратимый.
В левой части обратимый элемент, значит и в правой элемент тоже обратим.
и
– обратимы, тогда их произведение также обратимо
, значит
обратим.
IV . Для коммутативного положительного полукольца S равносильны следующие условия:
-
S – дистрибутивная решетка.
-
Доказательство.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.